

IALE 2025 European Landscape Ecology Congress Bratislava September 2-5, 2025

Roadkill in a highly fragmented landscape: Insights from a Mediterranean Island

Marilena Stamatiou¹, Savvas Zotos¹, Ioannis N. Vogiatzakis^{1,2}

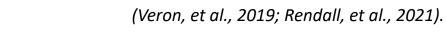
¹ Faculty of Pure and Applied Sciences, Open University of Cyprus
 ² Department of Soil, Plant and Food Sciences, Università degli studi di Bari Aldo Moro, Italy

Road Networks

- Commercially, financially and socially important for society
- Their effects well-studied the past decades through "Road Ecology"
- Direct effect on wildlife: Roadkill
- Indirect effects on biodiversity and ecosystems: pollution, soil sealing, habitat fragmentation, and more.

(van der Ree et al. 2015; Grilo, et al., 2025).

Road Ecology in Island Ecosystems


Island Ecology: Study of traits that make islands differ from mainland areas

Effects of fragmentation intensifying due to limited resources, including space

Lack of research on road ecology matters in SMIs

Pressures often
amplified by tourism =
heightened traffic and
denser infrastructure

Roadkill Monitoring in Cyprus

Roadkill Monitoring in Cyprus is currently conducted by two groups:

The Department of Public Works (DoPW)

- Monitoring highways and main roads
- Data available from 2013
- Largely removal of dangerous carcasses
- Dogs, Cats and foxes in majority

The Cyprus Roadkill Observation System (CyROS)

- Data collected through CS since 2006
- CyROS platform launches in 2017
- More than 2000 observations / 33 species (Aug '25)
- A total of 236 registered users

Lack of Comparison of Data with Landscape Indices

(Zotos and Vogiatzakis, 2018; Vogiatzakis, et al., 2022)

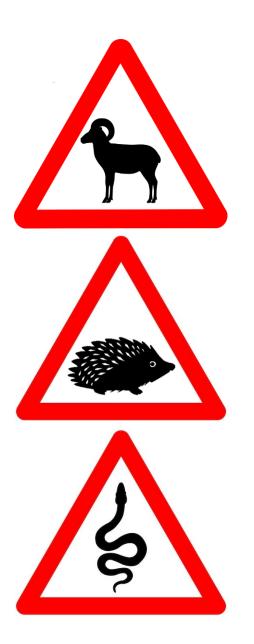
Current Challenges

- A. Cyprus urbanscapes rapidly expanding, including plans for extensive new road networks.
- B. Few big wildlife species (moufflon, fox), resulting in little interest for road-related conservation efforts.
- C. Despite the dense road network, transport systems of Cyprus remain understudied, as in many islands compared to mainland areas.
- D. Lack of systematic work on road affects to wildlife, and how they interact with island landscape traits.

(Zomeni and Vogiatzakis, 2014)

Aim & Objectives

Aim

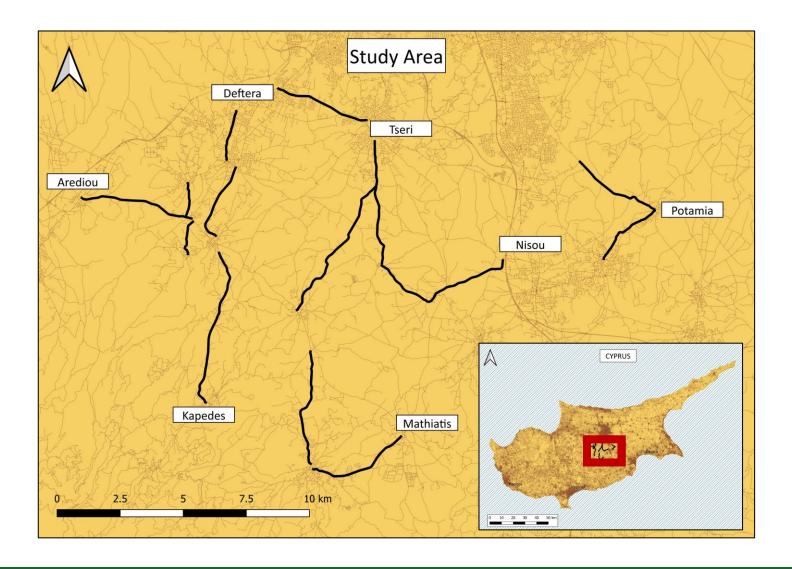

Analyzing 1.5 year of systematic roadkill reports to:

Identify island landscape characteristics

that increase roadkill risk.

Research Questions

- Which animals are the most affected by roadkill?
- What is the relationship of landscape context with roadkill hotspots?
- What is the relation between landscape fragmentation and roadkill risk?


Data Collection

Systematic Data Collection from 16 linear road segments apr. 2-4km each, E&F categories

Monitored at 30km 4 times per month from Jan 2024 to Jun 2025 (ongoing)

Each record includes:

- ID
- Species
- Geolocation
- Date
- Road ID
- CyROS ID
- Photo, if available
- Other comments

Methodology

Data collection

• Road monitoring Jan 2024 to Jun 2025, organised in database

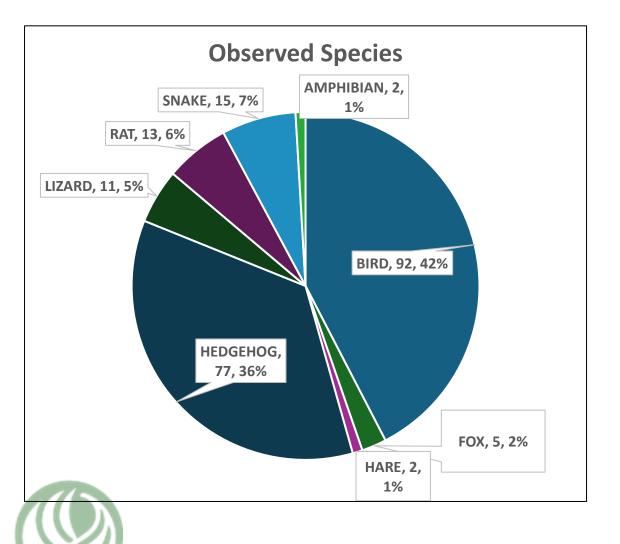
Estimation of hotspots

• KDE+ 3.3 Toolbox in ArcMap 10.7

Creation of hotspot buffer based on road effect zone

• 1km diameter buffer around each hotspot with QGIS 3.40.10

Landscape metrics per buffer calculated


V-LATE 2.0 software in ArcMap 10.7

Statistical analysis – GLMM modelling

• Rstudio, packages "stats" and "glmer"

• Total Observations

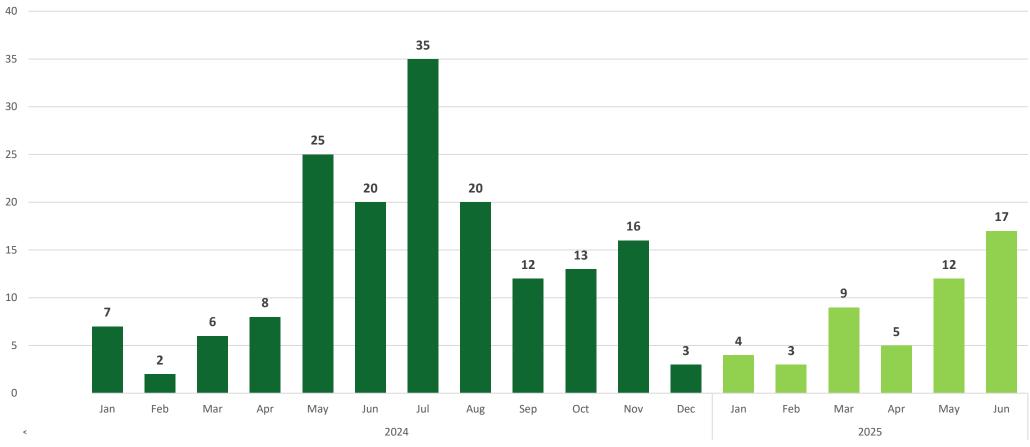
-110

327

 Observations excluding domestic and unrecognisable animals

• Insects (n=9) also excluded

-46

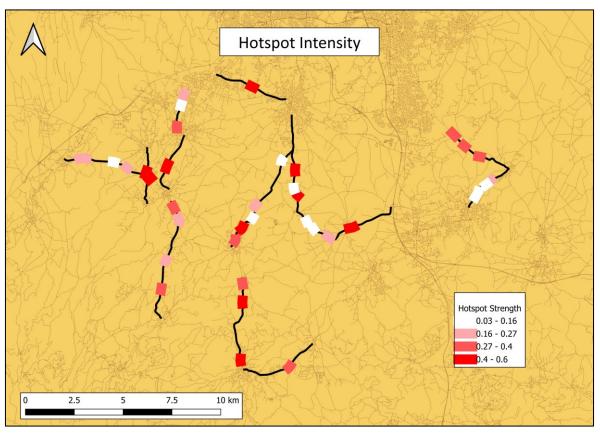

 Observations excluding chance encounters at roads connecting study area

217

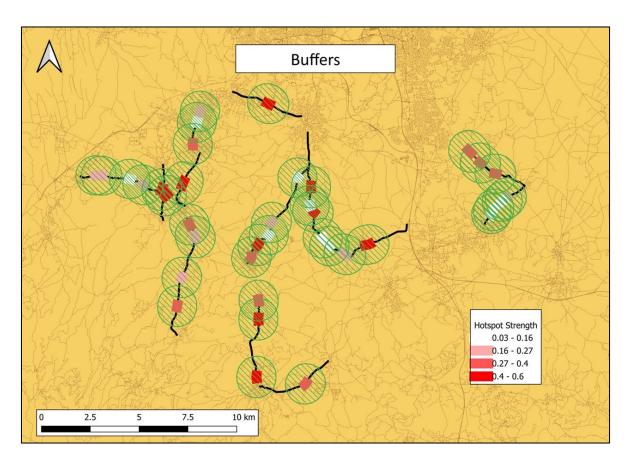
Observations for further analysis

Seasonal Data

Observations per Collection Month



Hotspots


Final 217 observations used

Hotspots (n=38) calculated by KDE+

Results

Factors calculated per buffer:

- **Hotspot Strength**
- **Points Density**
- Hotspot Length
- **Cluster Points**
- No. of Patches
- Total Road Length
- **Road Density**
- No of CLC classes
- Landscape Division Index
- Splitting Index
- **Effective Mesh Size**
- **Road Category**
- Sampling Road

Categorical

Dependent

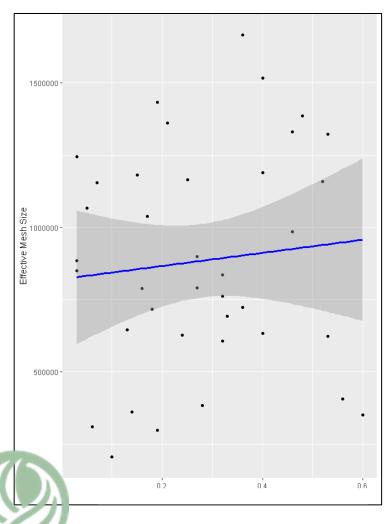
Variables

Correlation >80%

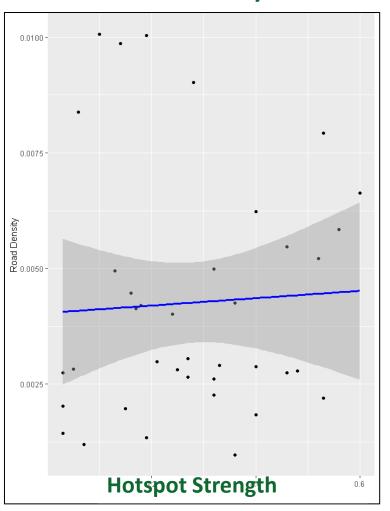
GLMM results

	Ho	Hotspot_Strength		
Predictors	Estimates	CI	р	
(Intercept)	-0.25	-0.56 - 0.07	0.120	
Effective Mesh Size	0.00	0.00 - 0.00	0.044	
Road Density	33.37	1.90 – 64.85	0.038	
Category [2]	0.07	-0.09 - 0.23	0.396	
CLC Classes No	0.04	0.00 - 0.08	0.049	
Random Effects				
σ^2	0.01	-0	nt	
700 Road_Name	0.02	significa P-val	ues	
ICC	0.60	218 19	N -	
N Road_Name	15	T		
Observations	38			
Marginal R ² / Conditional R ²	0.181 / 0.	669		

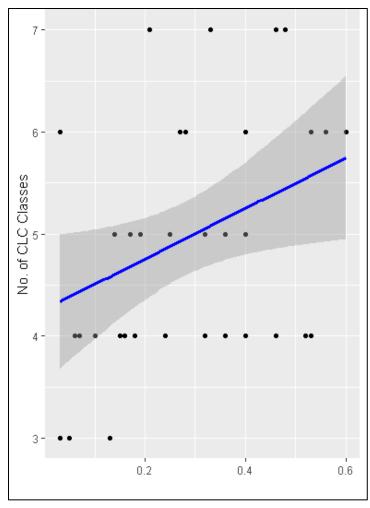
	Points_Density			
Predictors	Estimates	CI	р	
(Intercept)	4.76	2.08 - 7.44	0.001	
Effective Mesh Size	-0.00	-0.00 - 0.00	0.591	
Road Density	-64.15	-313.73 – 185.42	0.604	
Category [2]	0.08	-0.89 – 1.05	0.868	
CLC Classes No	-0.32	-0.65 - 0.02	0.067	
Random Effects				
σ^2	1.01	es (ant	
700 Road_Name	0.35	No signific	ues.	
ICC	0.26	MO 2.0-19		
N Road_Name	15	*		
Observations	38			
Marginal \mathbb{R}^2 / Conditional \mathbb{R}^2	0.108 / 0.	340		



troduction > Methods


Results

Correlation of Hotspot Strength with:


Effective Mesh Size

Road Density

No. of CLC Classes

Data Implications

- No significant correlation between Points Density and landscape features.
- → Possible influence of point density by other factors, like species behaviour
- Significant correlation between Hotspot Strength with Effective Mesh Size, Road Density, and Number of CLC Classes.
- → Higher Effective Mesh Size = Less Fragmentation
 Subject for additional investigation
- More intense positive correlation of Hotspot Strength with Number of Corine Land Cover Classes.
- → Higher possibility for barriers between land covers

Take Home Message

Established that landscape context interacts with road characteristics and influences roadkill risk.

- We expect this interaction to be more intense in island ecosystems
 - → relevant research still in initial stages
- Higher Effective Mesh Size, Road Density and number of Land Cover Classes promote roadkill risk.
- Land Cover Classes the most influential for roadkill risk.
- Pont density seemingly unrelated to landscape characteristics.

Current and Upcoming Actions

- Collection of systematic data for two years (2024 2025).
- Research on relationship of roadkill with other landscape traits.
- Expansion of data to strengthen results.
- Collaboration with Department of Public works for measures.
- Automation of roadkill detection through image recognition.

Further research needed, especially for Mediterranean island ecosystems!!!

Thank you! Any questions?

This research has been funded partly by the COST Action SMILES (CA21158)

References

- 1. Ree R Van Der, Smith DJ, and Grilo C. 2015. Handbook of road ecology. John Wiley \& Sons.
- 2. Forman RTT and Deblinger RD. 2000. The Ecological Road-Effect Zone of a Massachusetts (U.S.A.) Suburban Highway. Conserv Biol 14: 36–46.
- 3. Grilo C, Neves T, Bates J, et al. 2025. Global Roadkill Data: a dataset on terrestrial vertebrate mortality caused by collision with vehicles. Sci Data 12: 505.
- 4. Veron S, Mouchet M, Govaerts R, et al. 2019. Vulnerability to climate change of islands worldwide and its impact on the tree of life. Sci Rep 9: 14471.
- 5. Rendall A, Webb V, Sutherland D, et al. 2021. Where wildlife and traffic collide: drivers of roadkill rates change through time in a wildlife-tourism hotspot. Glob Ecol Conserv 27: e01530.
- 6. Zotos S and Vogiatzakis I. 2018. CyROS: Towards a common methodological framework for roadkills recording in Cyprus. 44: 109–14.
- 7. Vogiatzakis IN, Zotos S, Litskas V, and Leontiou S. 2022. Assessment of the Impacts of the Road Network on the Wildlife of Cyprus.
- 8. Microsoft Corporation 2018. Microsoft Excel.
- 9. QGIS Development Team. 2022. QGIS Geographic Information System.
- 10. R Core Team. 2025. R: A Language and Environment for Statistical Computing.
- 11. Bíl, M., Andrášik, R., Svoboda, T., Sedoník, J. KDE+. Computer software. Vers. 3.2. Olomouc: Transport Research Centre, 2020. Web. <www.kdeplus.cz>.
- 12. Centre for Geoinformatics, Z_GIS. 2020. Vector-based Landscape Analysis Tools (Extension for ArcGIS 10.6): V-LATE 2.0
- 13. Zomeni M and Vogiatzakis I. 2014. Roads and Roadless Areas in Cyprus: Implications For The Natura 2000 Network. *J Landsc Ecol* 7.

