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ARTICLE INFO ABSTRACT
Keywords: Forests play a crucial role in climate change mitigation through carbon storage. Nevertheless,
Carbon dynamics these ecosystems face increasing threats from human activities, such as infrastructure develop-

Edge effect
Machine learning
Natura 2000
Remote sensing

ment and Land Use/Land Cover (LULC) changes. To date, limited research has focused on un-
derstanding how roads impact carbon stocks in forests, and how this relation is influenced by
protection regimes, especially on islands. This study on the island of Cyprus aims to assess Ma-
chine Learning (ML) techniques for estimating key forest variables such as Canopy Cover (CC) and
to analyze the spatial dynamics of carbon stocks around roads in relation to LULCs and protection
regimes. Remote Sensing (RS) data, including Landsat imagery and orthophotos, are combined
with ML to create an ensemble model for detailed LULC classifications. The Integrated Valuation
of Ecosystem Services and Trade-offs (InVEST) tool is utilized to estimate carbon stocks for each
LULC and statistical analysis is used to evaluate interactions between forests, roads, and pro-
tection regimes. The analysis revealed that protected sites store significantly 17 % more carbon
than unprotected areas whilst proximity to roads exhibits complex effects on carbon stocks, with
varying patterns depending on the protection status. The ensemble model outperforms individual
models, achieving 92 % accuracy and a kappa of 0.91, showing the advantages of combining
algorithms for more robust predictions. The research highlights the impact of integrating ML with
ecosystem service models to improve understanding of interactions between roads, LULC, and
forests. It also emphasizes the importance of conservation and roadside vegetation management
for ecosystem resilience and sustainable carbon storage.

1. Introduction

Since the publication of the Sustainable Development Goals and the 2030 Agenda (United Nations General Assembly, 2015),
alongside European strategies such as the Fit for 55 package (European Council. Council of the European Union, 2024), forests have
gained prominence in the bioeconomy, with carbon sequestration and storage emerging as key regulating service (Dang et al., 2017;
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Zhao et al., 2022). Nonetheless, these ecosystems face growing pressure from natural and anthropogenic factors (Hu et al., 2017;
Nunery and Keeton, 2010), leading to a reduction in their integrity and the benefits they provide (Ouyang et al., 2016). Changes in
Land Use and Land Cover (LULC) particularly affect forests’ carbon storage capacity by altering their structure and composition,
notably along the interfaces between different LULC (Malik et al., 2024).

Among these dynamics, a key driver is the Edge Effect, which results from interactions at ecosystem boundaries, especially between
forests and road networks (Buss et al., 2024). These interactions alter ecological processes, influencing the rate of forest carbon and
biomass stocks (Harper et al., 2005; Kalinaki et al., 2023). Now more than ever, given their impact on vegetation dynamics (Miillerova
et al., 2011), it is critical to understand and model the influence of road networks on carbon stocks. Roads affect biotic and abiotic
components (Sun et al., 2025; Zhou et al., 2020), increasing light penetration, which can enhance productivity and biodiversity
(Dormann et al., 2020; Popperl and Seidl, 2021; Vepakomma et al., 2018). Nevertheless, they also modify temperature, humidity, and
soil conditions, increasing tree mortality at edges (Delgado et al., 2007; Toivio et al., 2017). These alterations influence forest dy-
namics and carbon stocks, but significant knowledge gaps remain regarding their effects at varying distances from roads and under
different conservation conditions.

To counteract biodiversity loss, protection regimes are established to address the unfavorable conservation status (Cannizzo et al.,
2024; Duncanson et al., 2023; Miranda et al., 2016). The Natura 2000 network (Evans, 2012) was established in Europe primarily to
safeguard habitats and species (Kallimanis et al., 2015; Mammides et al., 2024). However, despite these efforts, over 80 % of European
habitats remain in poor conservation status, and only 14 % of protected forest habitats are in favorable condition (Naumann et al.,
2020). Understanding the interaction between these protected areas with carbon stocks and roads remains understudied (Graham
etal., 2021). This gap is even wider in insular regions, where specific forest inventories may rely on scarce and fragmented data sources
(Zenonos et al., 2025), and where limited research has analyzed the impact of road networks on carbon stocks (Cruz-Pérez et al., 2023),
with minimal consideration given to protection status. Islands, especially in the Mediterranean, face additional pressures due to their
ecological vulnerability and exposure to extreme climate events (Vogiatzakis et al., 2023). Therefore, distinguishing between pro-
tected and unprotected areas is essential to assess how road infrastructure differentially affects carbon stocks in these fragile eco-
systems, where land-use regulation, conservation policies, and resilience to disturbance can vary substantially depending on protection
status.

On the other hand, Remote Sensing (RS) has been widely used to monitor land use, forest characteristics, and vegetation dynamics
(Kanjin and Alam, 2024; Teodoro and Duarte, 2022; Wang et al., 2022). Satellite imagery facilitates LULC classification (Joy et al.,
2024; Kovarnik and Janova, 2025) and carbon stock estimation (Chinembiri et al., 2023; Sudarez-Fernandez et al., 2025). While
cost-effective, freely available multispectral satellite data often have medium spatial resolution—ranging from 10 to 100 m according
to Gomez et al. (2016)—which can limit their ability to capture key forest inventory variables such as Canopy Cover (CC) (Bera et al.,
2023). High-resolution aerial orthophotos emerge as a suitable complement to satellite data, enhancing land cover and forest structure
analysis. Their integration improves LULC monitoring and ecosystem function assessments (Subedi et al., 2024).

In addition to RS, the advances of Machine Learning (ML) have also strengthened forest ecosystem analysis (Braham et al., 2023).
ML techniques can outperform traditional statistical methods by capturing complex non-linear relationships between sensor reflec-
tance and ecosystem dynamics (Tamiminia et al., 2024; Zurqgani, 2025). However, single ML models may be limited by overfitting,
limited generalization, or performance variability across study areas and datasets (Lei et al., 2020), while ensemble approaches,
integrating multiple algorithms, enhance predictive reliability (Ayushi et al., 2024; Du et al., 2023). These models mitigate individual
weaknesses, yielding more robust LULC and forest inventory predictions (Zhang et al., 2022). These techniques can be further
enhanced by tools designed to assess habitat quality and ecosystem services (Rimal et al., 2019), especially when extensive and
detailed ground-based inventory data are scarce, limiting direct connections between carbon stocks and ML models based on RS data
(Zenonos et al., 2025). Recent studies have attempted to overcome this limitation by integrating spatial modeling tools and hybrid
approaches (Almeida et al., 2025; Hernandez-Guzman et al., 2019; Khachoo et al., 2024), while also helping to bridge data gaps
through spatially explicit, model-driven estimates (Garcia-Ontiyuelo et al., 2024; Li et al., 2024). By integrating these frameworks,
which enhance the reliability of LULC classifications and reinforce their link to carbon stock estimates, a deeper understanding of the
complex interactions between anthropogenic infrastructure—such as roads—and natural systems is facilitated.

In this context, this study aims to: (1) evaluate individual and ensemble ML models for deriving key forest inventory variables such
as CC, and (2) analyze carbon stock in relation to LULCs and protection regimes, focusing on Mediterranean island forests adjacent to
roads. A key novelty is the analysis of carbon stocks across protected and unprotected habitats considering land cover and proximity to
the road network.

2. Study area and materials
2.1. Study area

The study was conducted in the Troodos massif of Cyprus, the third largest island of the Mediterranean (Fig. 1). Troodos covers one
third of the island’s surface ranging from 300 m up to the highest peak of Olympus at 1952 m. The study area incorporates several
protected sites designated under the Natura 2000 network (Fig. 1) such as Ethniko Dasiko Parko Troodous (CY5000004), Dasos
Machaira (CY2000004), and Dasos Pafou (CY2000016) (European Environment Agency, 2024), which consider both protection re-
gimes, that is, habitats and birds (Evans, 2012). The dominant tree species in the region include Pinus brutia, Juniperus spp., and, to a
lesser extent, Quercus alnifolia and Pinus nigra subsp. pallasiana, the latter being found at the high altitudes (>1400m) of Troodos
(Prodromou et al., 2024; Tsintides et al., 2002). These forests are embedded within a heterogeneous LULC mosaic—including
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Fig. 1. Location of the study area (Visualized in EPSG:4326 — WGS84) for global context; spatial analyses were conducted in EPSG:32636). a)
Distribution of fieldwork plots, Natura 2000 sites and region analyzed. b) Location of Cyprus in the eastern parts of the Mediterranean Sea.

scrublands, rocky outcrops, and agricultural land—which, when combined with the massif’s topographic complexity, contributes to
marked spatial variation in carbon storage.

As in many European islands, ecological and management contexts in Cyprus differ from mainland areas: insularity entails greater
vulnerability to climate change, limited resources, and governance challenges often shaped by political and economic dependencies
(Vogiatzakis et al., 2023). Within this setting, the study area shows contrasting management and disturbance histories—for instance,
forested interiors such as the Paphos Forest have experienced limited anthropogenic disturbance, while other zones reflect long-term
human pressure (Republic of Cyprus - The Mines Service, 2025). At a broader scale, Cyprus has one of the densest road networks in
Europe (2.3 km/km? on average), although the few remaining roadless areas—crucial for biodiversity conservation—are mostly found
within Natura 2000 sites (Zomeni and Vogiatzakis, 2014). Specifically, the area analyzed is traversed by a mix of primary and sec-
ondary paved roads (approximately 3900 km), but is predominantly shaped by an extensive network of unpaved roads, which account
for approximately 11,500 km—around 75 % of the total road length.

2.2. Data sources and analytical tools

A diverse set of geospatial datasets was integrated to support the analysis, all of which fully covered the extent of the study area
delineated in Fig. 1. These included high-resolution orthophotos, satellite imagery, topographic information, infrastructure layers, and
protected area boundaries. All datasets were selected based on official availability, completeness, and consistency across the study
area. The 2014 orthophotos represent the most recent high-resolution, full-coverage dataset publicly released by national authorities.
Similarly, the 30 m Digital Elevation Model (DEM) from 2000 remains the most widely used elevation dataset with complete coverage
of the island. While newer sources exist globally, more recent DEMs are not currently available for Cyprus with national coverage and
open access. Accordingly, Table 1 summarizes the main input layers used in this study, including details on spatial resolution, spectral
content, acquisition years, and data sources.

For data processing and statistical analysis, RStudio 2022.12.0 (Posit Software, 2025) with R version 4.1.3 (R Core Team, 2024)
was used, while QGIS 3.19.9 (QGIS, 2025) facilitated visualization and generation of geospatial layers. Additionally, the Integrated
Valuation of Ecosystem Services and Trade-offs (InVEST) tool (Natural Capital Project, 2024), widely recognized for ecosystem service
modeling—particularly for carbon stock assessment (Garcia-Ontiyuelo et al., 2024; Li et al., 2024)—was employed to evaluate spatial
patterns of carbon storage. This approach was motivated by the absence of a comprehensive and systematically structured national
forest inventory in Cyprus, which is based on infrequent field campaigns, limited sampling, and basic statistical methods (Zenonos
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Table 1
Summary of input geospatial datasets and their main characteristics.
Dataset” Year Resolution Spectral Content Temporal Coverage Source
s)
Orthophotos” 2014 0.5m Blue, Green, Red Single acquisition Public Administration and Personnel Department
(2024)
Digital Elevation 2000 ~30m Elevation Static NASA Shuttle Radar Topography Mission (SRTM)
Model (DEM) (2013)
Road Network 2024 Vector Road type Static United Nations Office for the Coordination of
layer Humanitarian Affairs (OCHA) (2024)
Natura 2000 sites 2022 Vector Protected area Static European Environment Agency (2024)
layer boundaries
Landsat-8 imagery" 2014 30 m Blue, Green, Red, NIR, Median composites Google Earth Engine (Gorelick et al., 2017)
Landsat-9 imagery“ 2024 SWIR1, SWIR2 per season:
e Spring: Mar
15-May 31
e Summer: Jun
15-Sep 14
e Autumn: Sep
15-Nov 30

2 All datasets were reprojected to EPSG:32636 — WGS 84/UTM zone 36N to ensure spatial consistency in the analysis.

b Orthophotos are typically acquired during summer, although late spring acquisitions may also occur. These dates generally coincide with the
Landsat summer composite period (June 15 — September 14), ensuring seasonal consistency for vegetation-related analyses. Note that the 2014
dataset represents the most recent full-coverage, official orthophoto mosaic available for Cyprus.

¢ Landsat-8 and Landsat-9 images with a cloud coverage of less than 5 %.

4" Acronyms: DEM = Digital Elevation Model; NIR = Near-Infrared; SWIR1/2 = Short-Wave Infrared bands 1 and 2.

et al., 2025), often assuming constant variables (Ministry of Agriculture Rural Development and Environment of Cyprus, 2019). These
constraints preclude the direct use of RS and ML approaches to estimate carbon stocks from forest structure, while InVEST has shown
strong potential for estimating carbon storage using LULC data and minimal ancillary inputs, making it a suitable alternative in
data-scarce contexts (de Araujo Fonseca & da Cunha Bustamante, 2025; Garcia-Ontiyuelo et al., 2024).

3. Methodology

The methodology is illustrated in Fig. 2 and consists of three main stages. First, satellite images and orthophotos were acquired and
preprocessed alongside vegetation indices (see Table 2 for indices derived from orthophotos and Table 3 for those from Landsat
imagery). Then, multiple ML models were trained and optimized for LULC classification (see the end of Section 3.1 for details on the
specific models used). Based on pixel-level classification, the CC was calculated, refining the models. The three best-performing models
were selected to build an ensemble, enabling LULC determination at varying CC levels. Finally, matching and statistical analyses
evaluated the impact of both Natura 2000 sites and road networks on carbon stocks, integrating field data, classification results, and
carbon models.

3.1. Land Use/Land Cover classification models with orthophotos

ML models—described in detail later—identified five land cover classes at the pixel level: forest (“Forest™), ground (“Ground”),
dwellings (“House/Urban”), roadway(“Road”), and water bodies (“Water™). This initial LULC classification was based on 0.5 m high-
resolution visible-spectrum orthophotos from 2014—the most recent official dataset available—which were complemented with
Landsat-8 infrared bands from the summer 2014 composite to ensure seasonal and same-year consistency. Due to the disparity in
spatial resolution (30 m for Landsat-8 and 0.5 m for orthophotos), the Lanczos interpolation method (Turkowski, 1990) was employed
to rescale Landsat-8 infrared band images to a target resolution of 0.5 m, as it better preserves edge definition and reduces aliasing
compared to others, while maintaining spectral information (Sales et al., 2023). In addition, vegetation spectral indices were calcu-
lated from the orthophoto visible bands using scaled reflectance values (Table 2) to enhance vegetation detection. These indices were
specifically selected for their applicability to visible-spectrum imagery, consistent with the orthophoto data; thus, indices requiring
near-infrared bands, such as NDVI, were not prioritized in this stage.
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Fig. 2. Workflow of the methodology. The first step, involving the acquisition and preprocessing of RS data, is highlighted in orange. The second
step, which focuses on training and testing classification models, is shown in blue. Finally, the third stage, encompassing ecological services
modeling and statistical analyses, is represented in green.

Table 2
Vegetation indices based on the visible light spectrum (Red, Green, Blue) for classification using aerial orthoimages.
Index Equation Source
Green Leaf Index (GLI) (2*Green) — Red — Blue Louhaichi L (2001
(2*Green) + Red + Blue ouhaichi et al. ( )
Normalized Difference Green-Red Index (NGRDI) Green — Red X
e Gitelson et al. (2002)
Green + Red
Visible Atmospherically Resistant Index (VARI) Green — Red .
B Gitelson et al. (2003)
Green + Red — Blue
Green-Red Ratio Index (GRRI) Green
Red Gamon and Surfus (1999)
Modified Green-Red Vegetation Index (MGRVI) (Greenz) _ (Redz) Bendig et al. (2015)

(Green?) + (Redz)
Vegetative Index (VEG) Green
( Red® 667) + (Blue(l—o.ew))

Hague et al. (2006)

# This table presents vegetation indices calculated from scaled reflectance values of orthophotos using only bands in the visible spectrum (Red,
Green, Blue). These indices were selected for their suitability with very high-resolution imagery lacking near-infrared or shortwave infrared
information.
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Subsequently, feature selection was performed using the Boruta method (Kursa and Rudnicki, 2010) and Variance Inflation Factor
(VIF) (Galvao and Aratjo, 2009) to retain relevant predictors, eliminating irrelevant and redundant variables. For the VIF, values
greater than 10, which indicate high collinearity and correlation with other variables, were selected for elimination (Ayushi et al.,
2024), resulting in a final set of 10 predictors. Then, the training and testing of the models for the classification of LULCs at a 0.5 m
pixel resolution, and the subsequent identification of the presence of vegetation, were performed using a total of 1750 manually
selected points on the orthophotos, distributed equally (350 points per class) in the five categories mentioned above. These points were
randomly distributed and allocated into a 70/30 ratio for training and testing of the models, respectively, ensuring that the distribution
was representative for both the area and the explanatory variables.

Consequently, several ML models, including Support Vector Machine (SVM) (Cervantes et al., 2020), Random Forest (RF) (Sun
et al., 2024), k-Nearest Neighbor (KNN) (Shi et al., 2022), Artificial Neural Network (ANN) (Park and Lek, 2016), Multivariate
Adaptive Regression Splines (MARS) (Lopez-Serrano et al., 2016), Gradient Boosting (GB) (Yang et al., 2020) and Penalized Regression
(PR) (Adhikari et al., 2023) were applied. The hyperparameter optimization was crucial to enhance accuracy and robustness, pre-
venting overfitting or underfitting (Bhungeni et al., 2024). Thus, for each model, a random search strategy was used to explore
different combinations of hyperparameters. In total, just over 3500 runs were executed across all models to identify the optimal
configurations, all implemented in R (via RStudio) to ensure reproducibility and efficient processing, with computations performed on
an HP OMEN laptop equipped with an 11th Gen Intel Core i7-11800H processor and 32 GB of RAM. The best-performing setup was
selected based on cross-validated accuracy and consistency between predictions and observations. Finally, the model with the highest
accuracy and agreement between predictions and observations was selected. The assessment was carried out using the confusion
matrix and the Kappa coefficient (Equation S1 in Supplementary Material), which measures the agreement between predictions and
observations, adjusting performance relative to random expectations. A higher Kappa indicates better model agreement and provides a
more robust evaluation.

3.2. Ensemble model with Landsat imagery

Landsat-8 and Landsat-9 images from multiple periods were used to update LULC classification from 2014 to 2024, refining forest
categories based on CC, defined as the ground area covered by the vertical projection of tree crowns (Jennings, 1999). The analysis
defined as ground area a 30 m x 30 m grid matching Landsat pixels, whilst canopy area was derived from orthophoto-based LULC
classifications (0.5 m x 0.5 m). To ensure purely forested areas, the 30 m grids were selected using the 2012 CORINE (Coordination of
Information on the Environment) LULC classification (European Environment Agency and Joint research centre, n.d.)—a standardized
European LULC dataset—as its year closely aligns with the 2014 orthophoto-derived LULC data. The classification from orthophotos
was then binarized, assigning 1 to “forest” and 0 to “soil” pixels, and the proportion of “1” pixels was computed for each 30 m grid
identified as forest using CORINE, representing the CC due to the high resolution of orthophotos.

Forest grids were defined, in accordance with the official criteria, as areas with a CC of at least 10 % (Ministry of Agriculture Rural
Development and Environment of Cyprus, 2019). These grids were then categorized into three classes based on CC: Hollow (<50 %),
Incomplete (50 %-80 %), and Complete (>80 %), reflecting thresholds commonly applied in LULC classification standards (Di Gre-
gorio; Antonio & Jansen, 2005) and RS studies (Tang et al., 2019). Although slight variations exist in other established thresholds
(FAO, 2001), these categories are widely used in the literature, fall within a comparable range, and reflect ecologically meaningful
distinctions. Additionally, other non-forest landscape classes, including those representing crops (“Crop”), dwellings (“House/Urban”),
water bodies (Water), and barren areas (“Bare”), were also classified, enabling structured analysis by coverage type. In the following
step, the vegetation indices shown by Bera et al. (2023) and detailed in Table 3 were calculated using the seasonal average satellite
images—Summer, Autumn, and Spring.

In order to address typical multicollinearity in RS data, a Principal Component Analysis (PCA) was applied to spectral bands and
vegetation indices, reducing redundancy while preserving at least 99 % of the original data variability (Jolliffe, 2002). At this stage, the
aforementioned ML algorithms were applied to this new vector space, with their hyperparameters tuned using the randomized search
approach. A total of randomly-selected 350 points were used for each of the classes (Bare, Complete, Crop, Hollow, House, Incomplete,
Water), preserving the 70/30 ratio for model training and validation. After this, the three models that presented the best evaluation
metrics, based on their accuracy and generalization, were selected.

Finally, the probabilities from these models were integrated into a new ensemble model, whose hyperparameters were re-optimized
using the randomized search approach, resulting in just over 3500 model runs. The model with the best testing metrics was then
applied to all satellite images from 2014 to 2024, obtaining an updated LULC classification, including CC classes. The performance of
both the final and intermediate models was evaluated using the Kappa coefficient.
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Table 3
Vegetation indices based on the multispectral spectrum (including Red, Green, Blue, Near-Infrared, and Shortwave Infrared) used with Landsat
satellite imagery®.

Index Equationb Source
Normalized Burn Ratio (NBR) NIR — SWIR2
NIR + SWIR2 Key and Benson (2006)
Normalized Multi-band Drought Index (NMDI) NIR — (SWIR1 — SWIR2) i
m Wang and Qu (2007)
Normalized Canopy Index 1 (NCI1) SWIR1 — Green X
m Vescovo and Gianelle (2008)
Normalized Canopy Index 2 (NCI2) SWIR2 — Green
SWIR2 + Green
Short-Wave Infrared Ratio 21 (SWIR21) SWIR2 .
SWIRL Guerschman et al. (2009)
Normalized Green (NG) Green )
m Sripada et al. (2006)
Optimized Soil-Adjusted Vegetation Index (OSAVI) (SWIR2 — Red)
—_—————— Rondeaux et al. (1996)
(NIR + Red + 0'16)
Green Difference Vegetation Index (GDVI) NIR — Green
Tucker et al. (1979)
Normalized Difference Vegetation Index (NDVI) NIR — Red .
NIR T Red Rouse et al. (1973)
Enhanced Vegetation Index (EVI) . NIR — Red
2'5% - Huete et al. (2002)
NIR + 6 Red — 7 5 Blue + 1
Visible Atmospherically Resistant Index Green (VARIg) Green — Red

m Gitelson et al. (2002)

2 This table includes vegetation indices commonly applied to satellite multispectral data. Calculations incorporate bands across the full spectral
range, including near-infrared and shortwave infrared, allowing for enhanced detection of vegetation and biophysical properties.
b Acronyms: NIR = Near-Infrared; SWIR1/2 = Short-Wave Infrared bands 1 and 2.

3.3. Analysis of the relationships between Natura 2000 areas, roads and carbon stocks

To estimate carbon stored in the study area, which included Above-Ground Carbon (AGC), Below-Ground Carbon (BGC), dead
carbon, and soil carbon, 10 representative circular plots (12m radius) were selected for each CC class—Complete, Incomplete, and
Hollow— totaling 30 plots (see pink dots in Fig. 1 and Table S1 in Supplementary Material for coordinates). As previously noted, the
CC thresholds—10 %, 50 %, and 80 %—are commonly used in LULC classifications, RS studies, and technical criteria for forest in-
ventory reporting (Di Gregorio; Antonio & Jansen, 2005; Ministry of Agriculture Rural Development and Environment of Cyprus,
2019; Tang et al., 2019). The tree species recorded were Pinus brutia, Pinus nigra, Cedrus brevifolia, Quercus alnifolia, and Quercus
coccifera. Pinus brutia was the most abundant species, consistent with previous species distribution maps for the region (Prodromou
et al., 2024). To minimize potential biases in mean carbon estimates, species-specific allometric equations were applied whenever
available, and all individuals—both dominant and suppressed—were measured across mono- and mixed-species plots to ensure a
representative assessment of stand-level biomass. Diameter at breast height (dbh) and total height (h) were measured to quantify
Above-Ground Biomass (AGB), while the Below-Ground Biomass (BGB) was calculated based on the AGB value, using the equation
defined by the Intergovernmental Panel on Climate Change (IPCC) (Penman et al., 2003) (see Table S2 in Supplementary Material for
equations). Dead biomass in island regions was estimated at around 8 % of AGB, according to forest inventories of several Mediter-
ranean countries (Augustynczik et al., 2024; Gasparini et al., 2022). These values were converted to carbon using a 0.5 conversion
factor (Petersson et al., 2012), obtaining AGC, BGC and dead carbon. Soil carbon was derived from Camera et al. (2017) using soil bulk
density from Panagos et al. (2024).

The InVEST tool was used to map the carbon storage across the study area using LULC classification layers from 2024 Landsat-9
images and field data, generating a carbon distribution map as in Garcia-Ontiyuelo et al. (2024) and Li et al. (2024). As com-
mented in Section 2.2, this tool is suitable for generating consistent carbon estimates from limited inputs, especially when extensive
forest inventory data are lacking, which restricts the use of reflectance-based ML models for estimating carbon stocks. In order to
analyze bias-free carbon distribution patterns relative to Natura 2000 sites and road networks, a matching analysis was conducted to
compare points with similar characteristics (Ho et al., 2011; Mammides et al., 2024). A total of 17500 points were randomly selected in
forested areas, each located within a 4 x 4 Landsat-9-pixel grid (120 m x 120 m). This grid size was chosen to approximate the 100 m
spatial resolution of the CORINE dataset, while remaining compatible with Landsat’s 30 m pixel structure. Slightly enlarging the unit
also helps reduce geolocation errors and spectral noise, allowing each sample to more reliably capture local forest conditions rather
than isolated pixel anomalies. Subsequently, for each point, the following average data was extracted: slope, roughness, altitude, and
distances to paved roads, unpaved roads, all roads (paved and unpaved), and whether the pixel fell within a Natura 2000 site. Due to
high correlation between slope and roughness (Fig. S1 in Supplementary Material), roughness was excluded. Similarly, as distance to
unpaved roads was highly correlated with distance to all roads (since unpaved roads represented 75 % of the road network), it was
excluded, as the distance to all roads more effectively assesses the impact of the road network.

Following the best practices described by Schleicher et al. (2020), several matching algorithms—specifically full, genetic, nearest
neighbor, optimal, and subclass matching—were evaluated, and the one providing the best balance between treated and control points
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was selected. Standard metrics, including standardized mean differences, variance ratios, and distributional balance (Ho et al., 2011),
were used. As a result, the optimal algorithm was “nearest neighbor” with Mahalanobis distance (Supplementary Material Tables S3
and S4 and Figs. S2-56), commonly applied in protected areas research (Mammides et al., 2024).

After matching, carbon stocks inside and outside Natura 2000 sites were analyzed using Generalized Additive Models (GAMs) with
a Gamma distribution and a logarithmic link function—an approach well-suited for modeling continuous, positive, and right-skewed
response variables (Ng and Cribbie, 2019), such as total carbon (Fig. S7 of the Supplementary Material). A schematic summary of the
GAM model structure, including smooth terms and interaction effects, is provided in Specification S1 of the Supplementary Material.
GAMs provide flexibility to capture non-linear relationships between predictors and the response variable, which are common in
ecological data (Clark and Wells, 2023; Guisan et al., 2002). In this context, the modeling approach was used to describe patterns in the
data, rather than to make predictions, focusing on the functional form and statistical significance of covariate effects, especially
distance to roads and Natura 2000 status. Consequently, model adequacy was assessed using standard diagnostics, including residual
plots, evaluation of variance structure, identification of influential observations, and assessment of smooth term complexity based on
effective degrees of freedom and k-index values.

The GAM incorporated Natura 2000 status and its interaction with distance to roads, allowing for a comprehensive evaluation of
potential effects. Furthermore, a Rosenbaum’s sensitivity analysis (Rosenbaum, 2002) was performed to check robustness against
unobserved biases, and the Wilcoxon test (Rey and Neuhauser, 2011) was used to assess statistical significance of carbon differences
between areas inside and outside Natura 2000. Finally, total carbon was calculated for each distance band from roads, and
g-computation (Snowden et al., 2011) was utilized to estimate Natura 2000’s impact based on road proximity, addressing residual
imbalances post-matching.

4. Results
4.1. LULC classification with orthophotos and Landsat ensemble models

The model adjustment results and metrics for LULC classification using orthophotos and Landsat ensemble models are presented.
For predictor selection in LULC classification with orthophotos, the Boruta method confirmed the significance of all predictors, while
VIF analysis identified high multicollinearity (VIF >10) in two vegetation indices (NGRDI and MGRVI), leading to their exclusion
(Table S5 in Supplementary Material).

Regarding the ML models using orthophotos, Table 4 summarizes the accuracy and optimal hyperparameters for each model. The
SVM was the best-performing model, achieving a Kappa coefficient of 0.88 in the test set, and 0.93 during training. Thus, SVM was
selected for its higher performance.

To calculate CC, the SVM classification model was applied to the entire study area, as exemplified in Fig. 3. The classification was
then binarized, assigning 1 to the forest class (Section 3.2) and, using the 30 m grid belonging to forested areas, as shown in Fig. 3c, the
CC was determined and classified into Complete, Incomplete, and Hollow.

In relation to PCA, a cumulative variance of 99.23 % was reached by PC17. Note that PC1 and PC2 together accounted for 75.61 %
and the scatterplot of samples along these two components—shown in Fig. S8 in Supplementary Material—illustrates partial overlap
among vegetation classes, indicating that additional PCs were necessary for better class discrimination. Consequently, after selecting
17 PCs, ML models were trained and optimized. As can be seen in Table 5, the best-performing models according to test performance
metrics were ANN, SVM, and GB. Therefore, their predicted probabilities were used as inputs for the new ensemble model.

Finally, to obtain the final ensemble model for LULC classification, the hyperparameters of the selected base models—ANN, SVM,

Table 4
Results for ML models assessed with orthoimagery, including training and testing metrics, and optimal hyperparameters.
Hyperparameters Training Testing
Model” Best Adjustment Accuracy Kappa Accuracy Kappa
SVM cost: 2"11 0.9426 0.9283 0.9042 0.8802
gamma: 0.0625
RF ntree: 1000 0.9213 0.9017 0.8716 0.8395
mtry: 7
KNN k: 13 0.9107 0.8884 0.8620 0.8275
ANN NeuronsperLayer: 24 0.9033 0.8791 0.9022 0.8778
threshold: 0.15
MARS degree: 2 0.8493 0.8116 0.8429 0.8036
nprune: 15
GB n.trees: 400 0.9131 0.8914 0.8735 0.8419

interaction.depth: 1
shrinkage: 0.06
n.minobsinnode: 16
PR alpha: 0.857 0.8591 0.8239 0.8582 0.8227
lambda: 0

@ Acronyms: SVM = Support Vector Machine; RF = Random Forest; KNN = k-Nearest Neighbors; ANN = Artificial Neural Network; MARS =
Multivariate Adaptive Regression Splines; GB = Gradient Boosting; PR = Penalized Regression.
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Fig. 3. Example of LULC classification from orthoimagery and binarization process for CC estimation (Visualized in EPSG:4326 — WGS84) for global
context; classification and analyses performed in EPSG:32636). a) Orthoimagery. b) LULC classification. c) Forest class with 30 m x 30 m Landsat

grid for CC estimation.

Table 5
Results for the ML models assessed with Landsat imagery, including training and testing metrics, and optimal hyperparameters.
Hyperparameters Training Testing
Model® Best Adjustment Accuracy Kappa Accuracy Kappa
SVM cost: 2°3 0.9428 0.9332 0.8840 0.8647
gamma: 0.0625
RF ntree: 800 0.9166 0.9027 0.8485 0.8233
mtry: 16
KNN k: 7 0.9583 0.9513 0.8472 0.8217
ANN NeuronsperLayer: 58 0.9526 0.9447 0.8840 0.8647
threshold: 0.605
MARS degree: 1 0.8300 0.8017 0.8240 0.7946
nprune: 25
GB n.trees: 100 0.9272 0.9151 0.8594 0.8360
interaction.depth: 3
shrinkage: 0.0421
n.minobsinnode: 11
PR alpha: 0.98 0.8758 0.8551 0.8485 0.8233
lambda: 0

@ Acronyms: SVM = Support Vector Machine; RF = Random Forest; KNN = k-Nearest Neighbors; ANN = Artificial Neural Network; MARS =
Multivariate Adaptive Regression Splines; GB = Gradient Boosting; PR = Penalized Regression.

and GB—and commonly used complementary models—KNN and PR— as in Ayushi et al. (2024), were optimized. As shown in Table 6,
GB achieved the best test performance, with a kappa coefficient of 0.91 and an accuracy of 92 % (see Table S6 in the Supplementary
Material for class-specific performance metrics), and with a suitable difference between training and testing results, indicating an
acceptable generalization capacity. Consequently, the GB-based model was applied to classify the seven LULC categories in the study
area for both 2014 and 2024 (shown in Fig. SO Supplementary Material).
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Table 6
Results for the ensemble models for final LULC classification, including training and testing metrics, and optimal hyperparameters.
Hyperparameters Training Testing
Model® Best Adjustment Accuracy Kappa Accuracy Kappa
SVM cost: 2"11 0.9345 0.9236 0.9079 0.8926
gamma: 0.001
GB n.trees: 100 0.9604 0.9538 0.9202 0.9069

interaction.depth: 4
shrinkage: 0.0230
n.minobsinnode: 6

KNN k: 8 0.9331 0.9220 0.9079 0.8926

ANN NeuronsperLayer: 28 0.9167 0.9029 0.9141 0.8997
threshold: 0.136

PR alpha: 0.7171 0.9031 0.8869 0.9018 0.8854

lambda: 0.0037

@ Acronyms: SVM = Support Vector Machine; GB = Gradient Boosting; KNN = k-Nearest Neighbors; ANN = Artificial Neural Network; PR =
Penalized Regression.

Table 7

Summary of carbon stocks used for estimation by InVEST modeling for each LULC category withing the study area.
LULC name C above (t/ha) C below (t/ha) C soil (t/ha) C dead (t/ha) Total (tC/ha) Area (ha) tC Total
Bare 0 0 50 0 50 15081.03 754051.5
Complete 125 28 53 10 216 29577.42 6388722.7
Crop 0 0 43 0 43 16437.42 706809.1
Hollow 18 5 49 1 73 30319.92 2213354.2
City 0 0 49 0 49 2772.09 135832.4
Incomplete 54 13 55 4 126 63115.02 7952492.5
Water 0 0 35 0 35 3073.77 107582.0
Total 197 46 334 15 592 160376.67 18258844.3

4.2. Invest estimation and carbon relationships

Regarding the carbon stock estimates, each LULC category from the Landsat-9 classification, which provided the mapped surface
areas, was linked to its carbon capacity using Table 7. This table was constructed following the input requirements of the InVEST
model, combining carbon pool estimates derived from fieldwork sampling plots (see Table S1 in Supplementary Material) with
additional data sources (see section 3.3). For the entire Troodos Mountain range, the total carbon stock estimated using InVEST was
18258844 t of carbon, or approximately 66949095 t of CO4 equivalent, based on the conversion factor provided by the United States
Environmental Protection Agency (EPA, 2024). This corresponds to an economic value of 4371 million Euros, calculated using the
2024 average carbon price in the European Trading System of 65.29 €/tCO, (SENDECO2, n.d.). Additionally, Fig. 4 specifically shows
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Fig. 4. Spatial distribution of estimated carbon stocks across the Troodos massif, overlaid with Natura 2000 sites and road infrastructure (Visualized
in EPSG:4326 — WGS84 for global context; analyses performed in EPSG:32636).
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Fig. 5. Boxplots of carbon values in forest areas inside and outside Natura 2000 sites. Blue represents protected sites (inside Natura 2000), and red
corresponds to non-protected (outside) areas. Boxes indicate the interquartile range (IQR), with the median shown as a solid horizontal line and the
mean as a dashed line. Whiskers extend to 1.5 times the IQR, highlighting data variability and potential outliers.

the spatial distribution of carbon stocks across the Troodos massif, highlighting areas of high and low carbon density in relation to
Natura 2000 sites and both paved and unpaved roads.

Subsequently, using the 10220 matched points (see Fig. S10 in Supplementary Material for an example of the matching technique),
the mean value was calculated for the sites belonging to and not belonging to the Natura 2000 network. A mean value of 132.958 tC/ha
was obtained for the treated group, or Natura sites group, and a mean value of 113.596 tC/ha for the control group, or non-Natura sites
group. The Wilcoxon test revealed a statistically significant difference between the mean carbon values of both groups (p-value
<0.001), and the g-computation calculation also indicated a significant difference in estimates between in and out of Natura 2000)
sites of 16.25 tC/ha with an error of 1.57 tC/ha. These results are visually summarized in Fig. 5, which shows the distribution of carbon
values across both groups using boxplots. The figure highlights higher median and mean carbon values within Natura 2000 sites
compared to non-protected areas, suggesting a positive effect of protection status on carbon storage. Furthermore, the sensitivity
analysis demonstrated that matching results were robust to unobserved biases up to a level of I' = 2 (Table S7 in Supplementary
Material), indicating that even in the presence of moderate selection bias—where treatment probabilities could double due to un-
observed variables—the treatment effect remained significant.

The GAM was then fitted using a Gamma distribution with a logarithmic link function, providing a flexible and robust approach to
capture potential nonlinear patterns and relationships in the data (section 3.3). Diagnostic analyses indicated that model assumptions
were reasonably met, as residuals were approximately normally distributed, centered around zero, and displayed no major patterns or
heteroscedasticity when plotted against fitted values or the linear predictor (see diagnostic plots in Fig. S11, Supplementary Material).
In terms of predictor effects, smooth terms revealed important nonlinear patterns (see Fig. S12). Notably, both the distance to paved
roads and its interaction with Natura 2000 designation were significant and showed nonlinear effects, with increasing distances
generally associated with higher carbon stocks. In contrast, while the main effect of distance to all roads was not significant (Table S8),
its interaction with Natura 2000 areas was, reinforcing the idea that proximity to infrastructure influences carbon differently within
protected areas. Additionally, slope and altitude were both significant and exhibited complex nonlinear effects, while aspect showed a
clear U-shaped relationship. These results highlight the utility of GAMs in uncovering nuanced spatial effects on carbon storage, also
confirming that the model provided an adequate and well-calibrated fit to the data.

The role of road-related variables in shaping carbon stocks is further illustrated in Fig. 6, which presents the smooth functions
estimated by the GAM for areas surrounding infrastructure, accompanied by their associated uncertainty and linear trend lines. As
shown, Natura 2000 areas (blue) generally exhibited higher carbon stocks than non-protected zones (red). For distance to paved roads
(left panel), carbon stocks tend to increase within Natura 2000 sites and decrease outside them, based on the linear trend over the first
1000 m. In contrast, when considering all roads—both paved and unpaved—carbon stocks decrease with distance, being more pro-
nounced within Natura 2000 sites. Additionally, Table SO (Supplementary Material) provides more details on carbon storage per buffer
around paved roads, total stored carbon, and the area of each buffer.
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Fig. 6. Variation in carbon stocks in relation to roads. Left: Considering only distances to paved roads. Right: Considering distances to all types
of roads.

5. Discussion

The analysis revealed that forested sites under Natura 2000 protection store significantly more carbon than unprotected areas, with
an average increase of 17 %, supporting the conservation value of such areas. Particularly, this difference may partly reflect the long-
standing protection of forested lands in the Troodos massif, which were subject to legal and customary conservation efforts well before
their formal inclusion in the Natura 2000 network, thus reflecting the effectiveness of long-term conservation measures in enhancing
carbon storage capacity. For instance, early forest legislation such as the 1879 Ordinance and the 1881 Forest Law brought all forests
under state control, establishing legal frameworks that restricted exploitative uses and regulated activities like grazing, which was
progressively phased out in state forests by 1950. Combined with additional protections—such as the declaration of Paphos Forest as a
game reserve in 1940—these long-term policies helped preserve forest structure and integrity over decades (FAO, 1952; Kyriacou,
2006). More recently, European-funded projects have reinforced these conservation outcomes through restoration actions and
adaptive forest management within Natura 2000 sites (European Commission, 2025; Georghiou et al., 2008).

In light of this context, the observed difference—although minor, possibly due to the specific characteristics of the Mediterranean
region analyzed—aligns with the findings of Duncanson et al. (2023), who reported that AGC was 28 % higher in protected areas
compared to globally matched unprotected sites. This difference in carbon storage between protection regimes could be attributed to
two main factors. On the one hand, the effectiveness of protection frameworks facilitates the implementation of adaptive management
measures and restrictions that minimize degrading activities, such as deforestation or urbanization, as demonstrated by Kallimanis
etal. (2015) or Mammides et al. (2024). These strategies enhance the resilience of forest ecosystems, ensuring vegetation regeneration
and contributing to increased carbon stocks. On the other hand, as noted by Miranda et al. (2016), protected areas are often located in
remote or inaccessible regions, which are typically less affected by human activities and land-use intensification. Such spatial char-
acteristics contribute to the preservation of natural ecosystem structure and function, facilitating continuous tree growth and biomass
accumulation. This pattern appears to be particularly relevant in certain parts of the study area, such as the Paphos Forest, where
limited anthropogenic disturbance has likely supported higher carbon retention, even though other regions have historically expe-
rienced varying degrees of human pressure (Republic of Cyprus - The Mines Service, 2025). Therefore, these findings highlight the
critical role of effectively managed protected areas in mitigating climate change and fostering long-term environmental sustainability,
as also emphasized by Cannizzo et al. (2024).

The analysis of road networks and carbon stocks in forested areas revealed complex interactions influenced by the type of road and
the protection status. Proximity to roads, considering the entire network—both paved and unpaved—was associated with an increase
in carbon stocks, aligning with Vepakomma et al. (2018) and Kalinaki et al. (2023), with this effect being especially pronounced in
protected areas, highlighting the statistical significance of the interaction between Natura 2000 status and distance to all roads. This
pattern may be linked to the predominance of unpaved roads, which account for 75 % of the network analyzed (over 11,500 km vs.
3900 km of paved roads). These roads extend deeper into natural landscapes, increasing light penetration, which may enhance pro-
ductivity and regeneration, thus promoting higher carbon storage along the roadsides. Nevertheless, while increased light availability
may stimulate biomass accumulation, roadside edges could simultaneously induce structural degradation, microclimatic alterations,
or species turnover, potentially compromising ecological integrity (Sun et al., 2025; Zhou et al., 2020). In addition, including this type
of distance to the entire road network in the analysis also introduced greater uncertainty with increasing distance, primarily due to
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fewer data points. Conversely, when distance to paved roads was considered, an opposite trend was observed between protected and
non-protected areas. Within Natura 2000 sites, carbon stocks increased with greater distance from roads, in accordance with the results
of Hu et al. (2017), whereas outside Natura 2000 sites, carbon stocks tend to decrease with distance, possibly due to differences in
LULC between protection regimes, with more forest cover, particularly complete CC class, in Natura 2000 sites, while outside, cropland
and forests with hollow CC class are more prevalent (see Supplementary Material Figs. S13-S15). It is also important to note that all
these findings also align with prior research on edge effects, which presents varying perspectives. For example, Popperl and Seidl
(2021) noted that edges can degrade forest structure but also promote biodiversity, while Delgado et al. (2007) and Dormann et al.
(2020) highlighted improvements due to increased light availability. Therefore, further research is needed to better understand these
dynamics, especially considering how protection regimes and management interact with road networks, rather than focusing solely on
road type, as suggested by Braham et al. (2023) or Vepakomma et al. (2018). Notably, to our knowledge, this is the first study to
examine edge effects on carbon storage across multiple road distances while explicitly accounting for protection regimes, highlighting
the need for a more detailed approach in future analyses.

As for the top-performing ML models used in this study—ANN, SVM, and GB—demonstrated strong performance in classifying
LULGCs using orthophotos and Landsat images, effectively estimating key variables such as CC. The final ensemble model, combining
these top-performing algorithms (ANN, SVM, and GB), outperformed individual models, achieving a Kappa coefficient of 0.91 and 92
% accuracy. This ensemble approach leveraged each algorithm’s strengths while mitigating weaknesses, as demonstrated by Du et al.
(2023) and Subedi et al. (2024), who reported comparable accuracies of 96 % and 94 %, respectively. In contrast, Kovarnik and Janova
(2025) obtained comparable accuracies using simple ML models. Consequently, for this region, traditional methods, such as the
SVM-based classification from orthophotos (section 3.1), achieved satisfactory results, with an accuracy of 90 % and a Kappa coef-
ficient of 0.88 in the test set, while ensemble models excelled in identifying complex patterns in heterogeneous environments and
diverse classes, such as CC in Mediterranean island ecosystems.

Concerning the limitations encountered, the use of InVEST stands out due to its inherent uncertainties in representing complex
forest ecosystem processes. Certain factors such as droughts, pests, silvicultural treatments, and fires are not dynamically incorporated,
potentially altering projections during ecological stability, as suggested by Nunery and Keeton (2010). Carbon stock estimates, which
assume constant values for the various LULC categories, simplify the influence of these biophysical factors. This assumption may
overlook critical biophysical processes that significantly impact growth and carbon storage. Additionally, the linear approach of the
InVEST model disregards variables such as nonlinear tree growth and soil chemistry changes (Dang et al., 2017), potentially under-
estimating or overestimating carbon stocks (Ouyang et al., 2016). Although the model outputs do not provide explicit error margins,
efforts were taken to minimize estimation biases by applying species-specific allometric equations when available and measuring both
dominant and suppressed individuals across mono- and mixed-species plots, ensuring a representative assessment of stand-level
biomass. Thus, future studies should integrate nonlinear models, accounting for climatic and abiotic factors, such as those devel-
oped in Ayushi et al. (2024), Sudrez-Fernandez et al. (2025) or Zurqani (2025), to improve carbon estimates, better quantify potential
uncertainties, and refine comparisons with InVEST-based predictions by evaluating possible deviations.

Another limitation was the scope of field sampling, which focused on an insular-Mediterranean ecosystem. While this may limit
extrapolation to other biomes or regions, it is the first study of its kind on islands, offering a novel reference for similar contexts. As
with any sampling approach, there is an inherent limitation in fully capturing the spatial heterogeneity of forest stands. In this case,
carbon stocks may vary with factors such as altitude, aspect, and forest age, which might not be adequately reflected in the existing
plots. Despite this, the findings provide valuable insights applicable to other Mediterranean islands—often underrepresented in sci-
entific literature—such as Corsica, Sardinia, or Sicily. Future research should include more diverse sampling locations, extend data
collection to continental ecosystems, and incorporate slopes and altitudinal gradients across various CC categories to enhance
representativeness and validate methodologies across broader environmental contexts.

Finally, it is important to note that limitations related to the spatial and temporal resolution of the RS data were identified. Landsat
images—spatial resolution of 30 m— may struggle to capture small-scale changes, leading to potential misclassification in complex
LULC mosaics. This could affect the accuracy of LULC classifications and, therefore, carbon stock estimates in transition zones. Higher-
resolution data, such as Sentinel-2, offer better boundary delineation but are limited temporally, as images are only available since
2015, preventing alignment with reference-period orthophotos. Moreover, persistent cloud cover and limited revisit fre-
quency—particularly during key seasons—could further restrict the availability of optimal scenes, especially in mountainous regions.
Future studies should prioritize higher spatial resolution data with consistent temporal and spatial coverage, and incorporate the most
recent officially released datasets whenever available.

Despite the methodological limitations noted, the results provided valuable insights for ecological protection and land management
on Mediterranean islands such as Cyprus, where forest inventories are often deficient and rely on limited sampling approaches
(Zenonos et al., 2025). This hampers their effectiveness in directly linking forest structure and carbon stocks with RS data, thereby
limiting accurate and up-to-date environmental planning. In this context, the application of the InVEST model enabled a robust
estimation of carbon storage (Garcia-Ontiyuelo et al., 2024), offering an objective analytical framework for regions with scarce
geospatial forest information. In addition, the increasing availability of cloud-based platforms—such as Google Earth Engine (GEE),
Amazon Web Services (AWS), and the Deep Earth System Data Lab (DeepESDL)—is further enhancing the capacity to perform
large-scale, reproducible carbon stock assessments by facilitating access to multi-source RS data and scalable computational tools
(Khachoo et al., 2024; Zhao et al., 2022). The findings indicated that Natura 2000 areas hold higher carbon levels, possibly due, as
previously discussed, to a greater presence of fully covered forest stands. This pattern—along with other documented environmental
benefits of these protected areas, such as improved soil conservation (Hagyo and Té6th, 2018) and reduced land conversion to artificial
surfaces (Mammides et al., 2024)—reinforces the requirement for local governments to prioritize the expansion, proper management,
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and interconnection of such areas. In particular, integrating carbon storage criteria into spatial planning, road infrastructure devel-
opment, and forest management strategies could substantially strengthen climate change mitigation efforts by providing
decision-makers with tools based on objective territorial characteristics.

In essence, the findings demonstrate the crucial role of Natura 2000 sites in conserving and enhancing ecosystem services,
particularly their effectiveness in carbon storage. They also emphasize the influence of road networks on carbon stocks, which depends
on both the distance to roads and the applied protection regime. This underscores the need for proper management of roadside
vegetation in protected areas to maximize environmental benefits, and in which future research will continue to explore these dy-
namics to develop more effective and adaptive conservation strategies.

6. Conclusion

This study emphasizes the critical role of combining advanced ML techniques with environmental modeling tools to improve forest
ecosystem management and understanding. The integration of an ensemble-based LULC classification approach with ecosystem ser-
vice models allowed for a highly accurate subdivision of forest classes based on CC, enabling a more detailed assessment of carbon
stocks. The findings underscore the crucial role of Natura 2000 sites in increasing carbon storage and reveal the complex interactions
between road networks, protection regime and carbon stocks. Specifically, carbon distribution varies depending on both the distance
to roads and the applied protection regime. These insights emphasize the need for adaptive conservation strategies that integrate ML,
RS, and ecosystem modeling to support sustainable forest management. Future research should further explore these dynamics to
refine land-use policies and enhance conservation and management planning.
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