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Gabriel E. Suárez-Fernández a,* , Savvas Zotos b , Joaquín Martínez-Sánchez a , 
Marilena Stamatiou b, Elli Tzirkalli b , Ioannis N. Vogiatzakis b,c, Pedro Arias a

a CINTECX, Universidade de Vigo. Applied Geotechnologies Group, Vigo, 36310, Spain
b Faculty of Pure and Applied Sciences, Open University of Cyprus, Latsia, Nicosia, 2220, Cyprus
c Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Italy

A R T I C L E  I N F O

Keywords:
Carbon dynamics
Edge effect
Machine learning
Natura 2000
Remote sensing

A B S T R A C T

Forests play a crucial role in climate change mitigation through carbon storage. Nevertheless, 
these ecosystems face increasing threats from human activities, such as infrastructure develop
ment and Land Use/Land Cover (LULC) changes. To date, limited research has focused on un
derstanding how roads impact carbon stocks in forests, and how this relation is in7uenced by 
protection regimes, especially on islands. This study on the island of Cyprus aims to assess Ma
chine Learning (ML) techniques for estimating key forest variables such as Canopy Cover (CC) and 
to analyze the spatial dynamics of carbon stocks around roads in relation to LULCs and protection 
regimes. Remote Sensing (RS) data, including Landsat imagery and orthophotos, are combined 
with ML to create an ensemble model for detailed LULC classi8cations. The Integrated Valuation 
of Ecosystem Services and Trade-offs (InVEST) tool is utilized to estimate carbon stocks for each 
LULC and statistical analysis is used to evaluate interactions between forests, roads, and pro
tection regimes. The analysis revealed that protected sites store signi8cantly 17 % more carbon 
than unprotected areas whilst proximity to roads exhibits complex effects on carbon stocks, with 
varying patterns depending on the protection status. The ensemble model outperforms individual 
models, achieving 92 % accuracy and a kappa of 0.91, showing the advantages of combining 
algorithms for more robust predictions. The research highlights the impact of integrating ML with 
ecosystem service models to improve understanding of interactions between roads, LULC, and 
forests. It also emphasizes the importance of conservation and roadside vegetation management 
for ecosystem resilience and sustainable carbon storage.

1. Introduction

Since the publication of the Sustainable Development Goals and the 2030 Agenda (United Nations General Assembly, 2015), 
alongside European strategies such as the Fit for 55 package (European Council. Council of the European Union, 2024), forests have 
gained prominence in the bioeconomy, with carbon sequestration and storage emerging as key regulating service (Dang et al., 2017; 
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Zhao et al., 2022). Nonetheless, these ecosystems face growing pressure from natural and anthropogenic factors (Hu et al., 2017; 
Nunery and Keeton, 2010), leading to a reduction in their integrity and the bene8ts they provide (Ouyang et al., 2016). Changes in 
Land Use and Land Cover (LULC) particularly affect forests’ carbon storage capacity by altering their structure and composition, 
notably along the interfaces between different LULC (Malik et al., 2024).

Among these dynamics, a key driver is the Edge Effect, which results from interactions at ecosystem boundaries, especially between 
forests and road networks (Buss et al., 2024). These interactions alter ecological processes, in7uencing the rate of forest carbon and 
biomass stocks (Harper et al., 2005; Kalinaki et al., 2023). Now more than ever, given their impact on vegetation dynamics (Müllerová 
et al., 2011), it is critical to understand and model the in7uence of road networks on carbon stocks. Roads affect biotic and abiotic 
components (Sun et al., 2025; Zhou et al., 2020), increasing light penetration, which can enhance productivity and biodiversity 
(Dormann et al., 2020; Pöpperl and Seidl, 2021; Vepakomma et al., 2018). Nevertheless, they also modify temperature, humidity, and 
soil conditions, increasing tree mortality at edges (Delgado et al., 2007; Toivio et al., 2017). These alterations in7uence forest dy
namics and carbon stocks, but signi8cant knowledge gaps remain regarding their effects at varying distances from roads and under 
different conservation conditions.

To counteract biodiversity loss, protection regimes are established to address the unfavorable conservation status (Cannizzo et al., 
2024; Duncanson et al., 2023; Miranda et al., 2016). The Natura 2000 network (Evans, 2012) was established in Europe primarily to 
safeguard habitats and species (Kallimanis et al., 2015; Mammides et al., 2024). However, despite these efforts, over 80 % of European 
habitats remain in poor conservation status, and only 14 % of protected forest habitats are in favorable condition (Naumann et al., 
2020). Understanding the interaction between these protected areas with carbon stocks and roads remains understudied (Graham 
et al., 2021). This gap is even wider in insular regions, where speci8c forest inventories may rely on scarce and fragmented data sources 
(Zenonos et al., 2025), and where limited research has analyzed the impact of road networks on carbon stocks (Cruz-Pérez et al., 2023), 
with minimal consideration given to protection status. Islands, especially in the Mediterranean, face additional pressures due to their 
ecological vulnerability and exposure to extreme climate events (Vogiatzakis et al., 2023). Therefore, distinguishing between pro
tected and unprotected areas is essential to assess how road infrastructure differentially affects carbon stocks in these fragile eco
systems, where land-use regulation, conservation policies, and resilience to disturbance can vary substantially depending on protection 
status.

On the other hand, Remote Sensing (RS) has been widely used to monitor land use, forest characteristics, and vegetation dynamics 
(Kanjin and Alam, 2024; Teodoro and Duarte, 2022; Wang et al., 2022). Satellite imagery facilitates LULC classi8cation (Joy et al., 
2024; Kovárník and Janová, 2025) and carbon stock estimation (Chinembiri et al., 2023; Suárez-Fernández et al., 2025). While 
cost-effective, freely available multispectral satellite data often have medium spatial resolution—ranging from 10 to 100 m according 
to Gómez et al. (2016)—which can limit their ability to capture key forest inventory variables such as Canopy Cover (CC) (Bera et al., 
2023). High-resolution aerial orthophotos emerge as a suitable complement to satellite data, enhancing land cover and forest structure 
analysis. Their integration improves LULC monitoring and ecosystem function assessments (Subedi et al., 2024).

In addition to RS, the advances of Machine Learning (ML) have also strengthened forest ecosystem analysis (Braham et al., 2023). 
ML techniques can outperform traditional statistical methods by capturing complex non-linear relationships between sensor re7ec
tance and ecosystem dynamics (Tamiminia et al., 2024; Zurqani, 2025). However, single ML models may be limited by over8tting, 
limited generalization, or performance variability across study areas and datasets (Lei et al., 2020), while ensemble approaches, 
integrating multiple algorithms, enhance predictive reliability (Ayushi et al., 2024; Du et al., 2023). These models mitigate individual 
weaknesses, yielding more robust LULC and forest inventory predictions (Zhang et al., 2022). These techniques can be further 
enhanced by tools designed to assess habitat quality and ecosystem services (Rimal et al., 2019), especially when extensive and 
detailed ground-based inventory data are scarce, limiting direct connections between carbon stocks and ML models based on RS data 
(Zenonos et al., 2025). Recent studies have attempted to overcome this limitation by integrating spatial modeling tools and hybrid 
approaches (Almeida et al., 2025; Hernández-Guzmán et al., 2019; Khachoo et al., 2024), while also helping to bridge data gaps 
through spatially explicit, model-driven estimates (García-Ontiyuelo et al., 2024; Li et al., 2024). By integrating these frameworks, 
which enhance the reliability of LULC classi8cations and reinforce their link to carbon stock estimates, a deeper understanding of the 
complex interactions between anthropogenic infrastructure—such as roads—and natural systems is facilitated.

In this context, this study aims to: (1) evaluate individual and ensemble ML models for deriving key forest inventory variables such 
as CC, and (2) analyze carbon stock in relation to LULCs and protection regimes, focusing on Mediterranean island forests adjacent to 
roads. A key novelty is the analysis of carbon stocks across protected and unprotected habitats considering land cover and proximity to 
the road network.

2. Study area and materials

2.1. Study area

The study was conducted in the Troodos massif of Cyprus, the third largest island of the Mediterranean (Fig. 1). Troodos covers one 
third of the island’s surface ranging from 300 m up to the highest peak of Olympus at 1952 m. The study area incorporates several 
protected sites designated under the Natura 2000 network (Fig. 1) such as Ethniko Dasiko Parko Troodous (CY5000004), Dasos 
Machaira (CY2000004), and Dasos Pafou (CY2000016) (European Environment Agency, 2024), which consider both protection re
gimes, that is, habitats and birds (Evans, 2012). The dominant tree species in the region include Pinus brutia, Juniperus spp., and, to a 
lesser extent, Quercus alnifolia and Pinus nigra subsp. pallasiana, the latter being found at the high altitudes (>1400m) of Troodos 
(Prodromou et al., 2024; Tsintides et al., 2002). These forests are embedded within a heterogeneous LULC mosaic—including 
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scrublands, rocky outcrops, and agricultural land—which, when combined with the massif’s topographic complexity, contributes to 
marked spatial variation in carbon storage.

As in many European islands, ecological and management contexts in Cyprus differ from mainland areas: insularity entails greater 
vulnerability to climate change, limited resources, and governance challenges often shaped by political and economic dependencies 
(Vogiatzakis et al., 2023). Within this setting, the study area shows contrasting management and disturbance histories—for instance, 
forested interiors such as the Paphos Forest have experienced limited anthropogenic disturbance, while other zones re7ect long-term 
human pressure (Republic of Cyprus - The Mines Service, 2025). At a broader scale, Cyprus has one of the densest road networks in 
Europe (2.3 km/km2 on average), although the few remaining roadless areas—crucial for biodiversity conservation—are mostly found 
within Natura 2000 sites (Zomeni and Vogiatzakis, 2014). Speci8cally, the area analyzed is traversed by a mix of primary and sec
ondary paved roads (approximately 3900 km), but is predominantly shaped by an extensive network of unpaved roads, which account 
for approximately 11,500 km—around 75 % of the total road length.

2.2. Data sources and analytical tools

A diverse set of geospatial datasets was integrated to support the analysis, all of which fully covered the extent of the study area 
delineated in Fig. 1. These included high-resolution orthophotos, satellite imagery, topographic information, infrastructure layers, and 
protected area boundaries. All datasets were selected based on of8cial availability, completeness, and consistency across the study 
area. The 2014 orthophotos represent the most recent high-resolution, full-coverage dataset publicly released by national authorities. 
Similarly, the 30 m Digital Elevation Model (DEM) from 2000 remains the most widely used elevation dataset with complete coverage 
of the island. While newer sources exist globally, more recent DEMs are not currently available for Cyprus with national coverage and 
open access. Accordingly, Table 1 summarizes the main input layers used in this study, including details on spatial resolution, spectral 
content, acquisition years, and data sources.

For data processing and statistical analysis, RStudio 2022.12.0 (Posit Software, 2025) with R version 4.1.3 (R Core Team, 2024) 
was used, while QGIS 3.19.9 (QGIS, 2025) facilitated visualization and generation of geospatial layers. Additionally, the Integrated 
Valuation of Ecosystem Services and Trade-offs (InVEST) tool (Natural Capital Project, 2024), widely recognized for ecosystem service 
modeling—particularly for carbon stock assessment (García-Ontiyuelo et al., 2024; Li et al., 2024)—was employed to evaluate spatial 
patterns of carbon storage. This approach was motivated by the absence of a comprehensive and systematically structured national 
forest inventory in Cyprus, which is based on infrequent 8eld campaigns, limited sampling, and basic statistical methods (Zenonos          

Fig. 1. Location of the study area (Visualized in EPSG:4326 – WGS84) for global context; spatial analyses were conducted in EPSG:32636). a) 
Distribution of 8eldwork plots, Natura 2000 sites and region analyzed. b) Location of Cyprus in the eastern parts of the Mediterranean Sea.
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et al., 2025), often assuming constant variables (Ministry of Agriculture Rural Development and Environment of Cyprus, 2019). These 
constraints preclude the direct use of RS and ML approaches to estimate carbon stocks from forest structure, while InVEST has shown 
strong potential for estimating carbon storage using LULC data and minimal ancillary inputs, making it a suitable alternative in 
data-scarce contexts (de Araujo Fonseca & da Cunha Bustamante, 2025; García-Ontiyuelo et al., 2024).

3. Methodology

The methodology is illustrated in Fig. 2 and consists of three main stages. First, satellite images and orthophotos were acquired and 
preprocessed alongside vegetation indices (see Table 2 for indices derived from orthophotos and Table 3 for those from Landsat 
imagery). Then, multiple ML models were trained and optimized for LULC classi8cation (see the end of Section 3.1 for details on the 
speci8c models used). Based on pixel-level classi8cation, the CC was calculated, re8ning the models. The three best-performing models 
were selected to build an ensemble, enabling LULC determination at varying CC levels. Finally, matching and statistical analyses 
evaluated the impact of both Natura 2000 sites and road networks on carbon stocks, integrating 8eld data, classi8cation results, and 
carbon models.

3.1. Land Use/Land Cover classi7cation models with orthophotos

ML models—described in detail later—identi8ed 8ve land cover classes at the pixel level: forest (“Forest”), ground (“Ground”), 
dwellings (“House/Urban”), roadway(“Road”), and water bodies (“Water”). This initial LULC classi8cation was based on 0.5 m high- 
resolution visible-spectrum orthophotos from 2014—the most recent of8cial dataset available—which were complemented with 
Landsat-8 infrared bands from the summer 2014 composite to ensure seasonal and same-year consistency. Due to the disparity in 
spatial resolution (30 m for Landsat-8 and 0.5 m for orthophotos), the Lanczos interpolation method (Turkowski, 1990) was employed 
to rescale Landsat-8 infrared band images to a target resolution of 0.5 m, as it better preserves edge de8nition and reduces aliasing 
compared to others, while maintaining spectral information (Sales et al., 2023). In addition, vegetation spectral indices were calcu
lated from the orthophoto visible bands using scaled re7ectance values (Table 2) to enhance vegetation detection. These indices were 
speci8cally selected for their applicability to visible-spectrum imagery, consistent with the orthophoto data; thus, indices requiring 
near-infrared bands, such as NDVI, were not prioritized in this stage.

Table 1 
Summary of input geospatial datasets and their main characteristics.

Dataseta Year 
(s)

Resolution Spectral Content Temporal Coverage Source

Orthophotosb 2014 0.5 m Blue, Green, Red Single acquisition Public Administration and Personnel Department 
(2024)

Digital Elevation 
Model (DEM)

2000 ~30 m Elevation Static NASA Shuttle Radar Topography Mission (SRTM) 
(2013)

Road Network 2024 Vector 
layer

Road type Static United Nations Of8ce for the Coordination of 
Humanitarian Affairs (OCHA) (2024)

Natura 2000 sites 2022 Vector 
layer

Protected area 
boundaries

Static European Environment Agency (2024)

Landsat-8 imageryc 2014 30 m Blue, Green, Red, NIR, 
SWIR1, SWIR2

Median composites 
per season: 
• Spring: Mar 

15–May 31
• Summer: Jun 

15–Sep 14
• Autumn: Sep 

15–Nov 30

Google Earth Engine (Gorelick et al., 2017)
Landsat-9 imageryd 2024

a All datasets were reprojected to EPSG:32636 – WGS 84/UTM zone 36N to ensure spatial consistency in the analysis.
b Orthophotos are typically acquired during summer, although late spring acquisitions may also occur. These dates generally coincide with the 

Landsat summer composite period (June 15 – September 14), ensuring seasonal consistency for vegetation-related analyses. Note that the 2014 
dataset represents the most recent full-coverage, of8cial orthophoto mosaic available for Cyprus.

c Landsat-8 and Landsat-9 images with a cloud coverage of less than 5 %.
d Acronyms: DEM = Digital Elevation Model; NIR = Near-Infrared; SWIR1/2 = Short-Wave Infrared bands 1 and 2.
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Fig. 2. Work7ow of the methodology. The 8rst step, involving the acquisition and preprocessing of RS data, is highlighted in orange. The second 
step, which focuses on training and testing classi8cation models, is shown in blue. Finally, the third stage, encompassing ecological services 
modeling and statistical analyses, is represented in green.

Table 2 
Vegetation indices based on the visible light spectrum (Red, Green, Blue) for classi8cation using aerial orthoimagesa.

Index Equation Source
Green Leaf Index (GLI) (2*Green) − Red − Blue

(2*Green) + Red + Blue Louhaichi et al. (2001)
Normalized Difference Green-Red Index (NGRDI) Green − Red

Green + Red Gitelson et al. (2002)
Visible Atmospherically Resistant Index (VARI) Green − Red

Green + Red − Blue Gitelson et al. (2003)
Green-Red Ratio Index (GRRI) Green

Red Gamon and Surfus (1999)
Modi8ed Green-Red Vegetation Index (MGRVI) (Green2)−

(

Red2
)

(Green2)+
(

Red2
)

Bendig et al. (2015)

Vegetative Index (VEG) Green
(

Red0.667
)

+
(

Blue(1−0.667)
) Hague et al. (2006)

a This table presents vegetation indices calculated from scaled re7ectance values of orthophotos using only bands in the visible spectrum (Red, 
Green, Blue). These indices were selected for their suitability with very high-resolution imagery lacking near-infrared or shortwave infrared 
information.
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Subsequently, feature selection was performed using the Boruta method (Kursa and Rudnicki, 2010) and Variance In7ation Factor 
(VIF) (Galvão and Araújo, 2009) to retain relevant predictors, eliminating irrelevant and redundant variables. For the VIF, values 
greater than 10, which indicate high collinearity and correlation with other variables, were selected for elimination (Ayushi et al., 
2024), resulting in a 8nal set of 10 predictors. Then, the training and testing of the models for the classi8cation of LULCs at a 0.5 m 
pixel resolution, and the subsequent identi8cation of the presence of vegetation, were performed using a total of 1750 manually 
selected points on the orthophotos, distributed equally (350 points per class) in the 8ve categories mentioned above. These points were 
randomly distributed and allocated into a 70/30 ratio for training and testing of the models, respectively, ensuring that the distribution 
was representative for both the area and the explanatory variables.

Consequently, several ML models, including Support Vector Machine (SVM) (Cervantes et al., 2020), Random Forest (RF) (Sun 
et al., 2024), k-Nearest Neighbor (KNN) (Shi et al., 2022), Arti8cial Neural Network (ANN) (Park and Lek, 2016), Multivariate 
Adaptive Regression Splines (MARS) (López-Serrano et al., 2016), Gradient Boosting (GB) (Yang et al., 2020) and Penalized Regression 
(PR) (Adhikari et al., 2023) were applied. The hyperparameter optimization was crucial to enhance accuracy and robustness, pre
venting over8tting or under8tting (Bhungeni et al., 2024). Thus, for each model, a random search strategy was used to explore 
different combinations of hyperparameters. In total, just over 3500 runs were executed across all models to identify the optimal 
con8gurations, all implemented in R (via RStudio) to ensure reproducibility and ef8cient processing, with computations performed on 
an HP OMEN laptop equipped with an 11th Gen Intel Core i7-11800H processor and 32 GB of RAM. The best-performing setup was 
selected based on cross-validated accuracy and consistency between predictions and observations. Finally, the model with the highest 
accuracy and agreement between predictions and observations was selected. The assessment was carried out using the confusion 
matrix and the Kappa coef8cient (Equation S1 in Supplementary Material), which measures the agreement between predictions and 
observations, adjusting performance relative to random expectations. A higher Kappa indicates better model agreement and provides a 
more robust evaluation.

3.2. Ensemble model with Landsat imagery

Landsat-8 and Landsat-9 images from multiple periods were used to update LULC classi8cation from 2014 to 2024, re8ning forest 
categories based on CC, de8ned as the ground area covered by the vertical projection of tree crowns (Jennings, 1999). The analysis 
de8ned as ground area a 30 m × 30 m grid matching Landsat pixels, whilst canopy area was derived from orthophoto-based LULC 
classi8cations (0.5 m × 0.5 m). To ensure purely forested areas, the 30 m grids were selected using the 2012 CORINE (Coordination of 
Information on the Environment) LULC classi8cation (European Environment Agency and Joint research centre, n.d.)—a standardized 
European LULC dataset—as its year closely aligns with the 2014 orthophoto-derived LULC data. The classi8cation from orthophotos 
was then binarized, assigning 1 to “forest” and 0 to “soil” pixels, and the proportion of “1″ pixels was computed for each 30 m grid 
identi8ed as forest using CORINE, representing the CC due to the high resolution of orthophotos.

Forest grids were de8ned, in accordance with the of8cial criteria, as areas with a CC of at least 10 % (Ministry of Agriculture Rural 
Development and Environment of Cyprus, 2019). These grids were then categorized into three classes based on CC: Hollow (<50 %), 
Incomplete (50 %–80 %), and Complete (>80 %), re7ecting thresholds commonly applied in LULC classi8cation standards (Di Gre
gorio; Antonio & Jansen, 2005) and RS studies (Tang et al., 2019). Although slight variations exist in other established thresholds 
(FAO, 2001), these categories are widely used in the literature, fall within a comparable range, and re7ect ecologically meaningful 
distinctions. Additionally, other non-forest landscape classes, including those representing crops (“Crop”), dwellings (“House/Urban”), 
water bodies (Water), and barren areas (“Bare”), were also classi8ed, enabling structured analysis by coverage type. In the following 
step, the vegetation indices shown by Bera et al. (2023) and detailed in Table 3 were calculated using the seasonal average satellite 
images—Summer, Autumn, and Spring.

In order to address typical multicollinearity in RS data, a Principal Component Analysis (PCA) was applied to spectral bands and 
vegetation indices, reducing redundancy while preserving at least 99 % of the original data variability (Jolliffe, 2002). At this stage, the 
aforementioned ML algorithms were applied to this new vector space, with their hyperparameters tuned using the randomized search 
approach. A total of randomly-selected 350 points were used for each of the classes (Bare, Complete, Crop, Hollow, House, Incomplete, 
Water), preserving the 70/30 ratio for model training and validation. After this, the three models that presented the best evaluation 
metrics, based on their accuracy and generalization, were selected.

Finally, the probabilities from these models were integrated into a new ensemble model, whose hyperparameters were re-optimized 
using the randomized search approach, resulting in just over 3500 model runs. The model with the best testing metrics was then 
applied to all satellite images from 2014 to 2024, obtaining an updated LULC classi8cation, including CC classes. The performance of 
both the 8nal and intermediate models was evaluated using the Kappa coef8cient.
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3.3. Analysis of the relationships between Natura 2000 areas, roads and carbon stocks

To estimate carbon stored in the study area, which included Above-Ground Carbon (AGC), Below-Ground Carbon (BGC), dead 
carbon, and soil carbon, 10 representative circular plots (12m radius) were selected for each CC class—Complete, Incomplete, and 
Hollow— totaling 30 plots (see pink dots in Fig. 1 and Table S1 in Supplementary Material for coordinates). As previously noted, the 
CC thresholds—10 %, 50 %, and 80 %—are commonly used in LULC classi8cations, RS studies, and technical criteria for forest in
ventory reporting (Di Gregorio; Antonio & Jansen, 2005; Ministry of Agriculture Rural Development and Environment of Cyprus, 
2019; Tang et al., 2019). The tree species recorded were Pinus brutia, Pinus nigra, Cedrus brevifolia, Quercus alnifolia, and Quercus 
coccifera. Pinus brutia was the most abundant species, consistent with previous species distribution maps for the region (Prodromou 
et al., 2024). To minimize potential biases in mean carbon estimates, species-speci8c allometric equations were applied whenever 
available, and all individuals—both dominant and suppressed—were measured across mono- and mixed-species plots to ensure a 
representative assessment of stand-level biomass. Diameter at breast height (dbh) and total height (h) were measured to quantify 
Above-Ground Biomass (AGB), while the Below-Ground Biomass (BGB) was calculated based on the AGB value, using the equation 
de8ned by the Intergovernmental Panel on Climate Change (IPCC) (Penman et al., 2003) (see Table S2 in Supplementary Material for 
equations). Dead biomass in island regions was estimated at around 8 % of AGB, according to forest inventories of several Mediter
ranean countries (Augustynczik et al., 2024; Gasparini et al., 2022). These values were converted to carbon using a 0.5 conversion 
factor (Petersson et al., 2012), obtaining AGC, BGC and dead carbon. Soil carbon was derived from Camera et al. (2017) using soil bulk 
density from Panagos et al. (2024).

The InVEST tool was used to map the carbon storage across the study area using LULC classi8cation layers from 2024 Landsat-9 
images and 8eld data, generating a carbon distribution map as in García-Ontiyuelo et al. (2024) and Li et al. (2024). As com
mented in Section 2.2, this tool is suitable for generating consistent carbon estimates from limited inputs, especially when extensive 
forest inventory data are lacking, which restricts the use of re7ectance-based ML models for estimating carbon stocks. In order to 
analyze bias-free carbon distribution patterns relative to Natura 2000 sites and road networks, a matching analysis was conducted to 
compare points with similar characteristics (Ho et al., 2011; Mammides et al., 2024). A total of 17500 points were randomly selected in 
forested areas, each located within a 4 x 4 Landsat-9-pixel grid (120 m × 120 m). This grid size was chosen to approximate the 100 m 
spatial resolution of the CORINE dataset, while remaining compatible with Landsat’s 30 m pixel structure. Slightly enlarging the unit 
also helps reduce geolocation errors and spectral noise, allowing each sample to more reliably capture local forest conditions rather 
than isolated pixel anomalies. Subsequently, for each point, the following average data was extracted: slope, roughness, altitude, and 
distances to paved roads, unpaved roads, all roads (paved and unpaved), and whether the pixel fell within a Natura 2000 site. Due to 
high correlation between slope and roughness (Fig. S1 in Supplementary Material), roughness was excluded. Similarly, as distance to 
unpaved roads was highly correlated with distance to all roads (since unpaved roads represented 75 % of the road network), it was 
excluded, as the distance to all roads more effectively assesses the impact of the road network.

Following the best practices described by Schleicher et al. (2020), several matching algorithms—speci8cally full, genetic, nearest 
neighbor, optimal, and subclass matching—were evaluated, and the one providing the best balance between treated and control points 

Table 3 
Vegetation indices based on the multispectral spectrum (including Red, Green, Blue, Near-Infrared, and Shortwave Infrared) used with Landsat 
satellite imagerya.

Index Equationb Source
Normalized Burn Ratio (NBR) NIR − SWIR2

NIR + SWIR2 Key and Benson (2006)
Normalized Multi-band Drought Index (NMDI) NIR − (SWIR1 − SWIR2)

NIR + (SWIR1 + SWIR2) Wang and Qu (2007)
Normalized Canopy Index 1 (NCI1) SWIR1 − Green

SWIR1 + Green Vescovo and Gianelle (2008)
Normalized Canopy Index 2 (NCI2) SWIR2 − Green

SWIR2 + Green
Short-Wave Infrared Ratio 21 (SWIR21) SWIR2

SWIR1 Guerschman et al. (2009)
Normalized Green (NG) Green

(NIR + Red + Green) Sripada et al. (2006)
Optimized Soil-Adjusted Vegetation Index (OSAVI) (SWIR2 − Red)

(NIR + Red + 0‘16) Rondeaux et al. (1996)
Green Difference Vegetation Index (GDVI) NIR− Green Tucker et al. (1979)
Normalized Difference Vegetation Index (NDVI) NIR − Red

NIR + Red Rouse et al. (1973)
Enhanced Vegetation Index (EVI) 2‘5* NIR − Red

NIR + 6 Red − 7‘ 5 Blue + 1
Huete et al. (2002)

Visible Atmospherically Resistant Index Green (VARIg) Green − Red
Green + Red − Blue Gitelson et al. (2002)

a This table includes vegetation indices commonly applied to satellite multispectral data. Calculations incorporate bands across the full spectral 
range, including near-infrared and shortwave infrared, allowing for enhanced detection of vegetation and biophysical properties.

b Acronyms: NIR = Near-Infrared; SWIR1/2 = Short-Wave Infrared bands 1 and 2.

G.E. Suárez-Fernández et al.                                                                                                                                                                                        Remote Sensing Applications: Society and Environment 39 (2025) 101713 

7 



was selected. Standard metrics, including standardized mean differences, variance ratios, and distributional balance (Ho et al., 2011), 
were used. As a result, the optimal algorithm was “nearest neighbor” with Mahalanobis distance (Supplementary Material Tables S3 
and S4 and Figs. S2–S6), commonly applied in protected areas research (Mammides et al., 2024).

After matching, carbon stocks inside and outside Natura 2000 sites were analyzed using Generalized Additive Models (GAMs) with 
a Gamma distribution and a logarithmic link function—an approach well-suited for modeling continuous, positive, and right-skewed 
response variables (Ng and Cribbie, 2019), such as total carbon (Fig. S7 of the Supplementary Material). A schematic summary of the 
GAM model structure, including smooth terms and interaction effects, is provided in Speci8cation S1 of the Supplementary Material. 
GAMs provide 7exibility to capture non-linear relationships between predictors and the response variable, which are common in 
ecological data (Clark and Wells, 2023; Guisan et al., 2002). In this context, the modeling approach was used to describe patterns in the 
data, rather than to make predictions, focusing on the functional form and statistical signi8cance of covariate effects, especially 
distance to roads and Natura 2000 status. Consequently, model adequacy was assessed using standard diagnostics, including residual 
plots, evaluation of variance structure, identi8cation of in7uential observations, and assessment of smooth term complexity based on 
effective degrees of freedom and k-index values.

The GAM incorporated Natura 2000 status and its interaction with distance to roads, allowing for a comprehensive evaluation of 
potential effects. Furthermore, a Rosenbaum’s sensitivity analysis (Rosenbaum, 2002) was performed to check robustness against 
unobserved biases, and the Wilcoxon test (Rey and Neuhäuser, 2011) was used to assess statistical signi8cance of carbon differences 
between areas inside and outside Natura 2000. Finally, total carbon was calculated for each distance band from roads, and 
g-computation (Snowden et al., 2011) was utilized to estimate Natura 2000’s impact based on road proximity, addressing residual 
imbalances post-matching.

4. Results

4.1. LULC classi7cation with orthophotos and Landsat ensemble models

The model adjustment results and metrics for LULC classi8cation using orthophotos and Landsat ensemble models are presented. 
For predictor selection in LULC classi8cation with orthophotos, the Boruta method con8rmed the signi8cance of all predictors, while 
VIF analysis identi8ed high multicollinearity (VIF >10) in two vegetation indices (NGRDI and MGRVI), leading to their exclusion 
(Table S5 in Supplementary Material).

Regarding the ML models using orthophotos, Table 4 summarizes the accuracy and optimal hyperparameters for each model. The 
SVM was the best-performing model, achieving a Kappa coef8cient of 0.88 in the test set, and 0.93 during training. Thus, SVM was 
selected for its higher performance.

To calculate CC, the SVM classi8cation model was applied to the entire study area, as exempli8ed in Fig. 3. The classi8cation was 
then binarized, assigning 1 to the forest class (Section 3.2) and, using the 30 m grid belonging to forested areas, as shown in Fig. 3c, the 
CC was determined and classi8ed into Complete, Incomplete, and Hollow.

In relation to PCA, a cumulative variance of 99.23 % was reached by PC17. Note that PC1 and PC2 together accounted for 75.61 % 
and the scatterplot of samples along these two components—shown in Fig. S8 in Supplementary Material—illustrates partial overlap 
among vegetation classes, indicating that additional PCs were necessary for better class discrimination. Consequently, after selecting 
17 PCs, ML models were trained and optimized. As can be seen in Table 5, the best-performing models according to test performance 
metrics were ANN, SVM, and GB. Therefore, their predicted probabilities were used as inputs for the new ensemble model.

Finally, to obtain the 8nal ensemble model for LULC classi8cation, the hyperparameters of the selected base models—ANN, SVM, 

Table 4 
Results for ML models assessed with orthoimagery, including training and testing metrics, and optimal hyperparameters.

Hyperparameters Training Testing
Modela Best Adjustment Accuracy Kappa Accuracy Kappa
SVM cost: 2^11 

gamma: 0.0625
0.9426 0.9283 0.9042 0.8802

RF ntree: 1000 
mtry: 7

0.9213 0.9017 0.8716 0.8395

KNN k: 13 0.9107 0.8884 0.8620 0.8275
ANN NeuronsperLayer: 24 

threshold: 0.15
0.9033 0.8791 0.9022 0.8778

MARS degree: 2 
nprune: 15

0.8493 0.8116 0.8429 0.8036

GB n.trees: 400 
interaction.depth: 1 
shrinkage: 0.06 
n.minobsinnode: 16

0.9131 0.8914 0.8735 0.8419

PR alpha: 0.857 
lambda: 0

0.8591 0.8239 0.8582 0.8227

a Acronyms: SVM = Support Vector Machine; RF = Random Forest; KNN = k-Nearest Neighbors; ANN = Arti8cial Neural Network; MARS =
Multivariate Adaptive Regression Splines; GB = Gradient Boosting; PR = Penalized Regression.
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and GB—and commonly used complementary models—KNN and PR— as in Ayushi et al. (2024), were optimized. As shown in Table 6, 
GB achieved the best test performance, with a kappa coef8cient of 0.91 and an accuracy of 92 % (see Table S6 in the Supplementary 
Material for class-speci8c performance metrics), and with a suitable difference between training and testing results, indicating an 
acceptable generalization capacity. Consequently, the GB-based model was applied to classify the seven LULC categories in the study 
area for both 2014 and 2024 (shown in Fig. S9 Supplementary Material).

Fig. 3. Example of LULC classi8cation from orthoimagery and binarization process for CC estimation (Visualized in EPSG:4326 – WGS84) for global 
context; classi8cation and analyses performed in EPSG:32636). a) Orthoimagery. b) LULC classi8cation. c) Forest class with 30 m × 30 m Landsat 
grid for CC estimation.

Table 5 
Results for the ML models assessed with Landsat imagery, including training and testing metrics, and optimal hyperparameters.

Hyperparameters Training Testing
Modela Best Adjustment Accuracy Kappa Accuracy Kappa
SVM cost: 2^3 

gamma: 0.0625
0.9428 0.9332 0.8840 0.8647

RF ntree: 800 
mtry: 16

0.9166 0.9027 0.8485 0.8233

KNN k: 7 0.9583 0.9513 0.8472 0.8217
ANN NeuronsperLayer: 58 

threshold: 0.605
0.9526 0.9447 0.8840 0.8647

MARS degree: 1 
nprune: 25

0.8300 0.8017 0.8240 0.7946

GB n.trees: 100 
interaction.depth: 3 
shrinkage: 0.0421 
n.minobsinnode: 11

0.9272 0.9151 0.8594 0.8360

PR alpha: 0.98 
lambda: 0

0.8758 0.8551 0.8485 0.8233

a Acronyms: SVM = Support Vector Machine; RF = Random Forest; KNN = k-Nearest Neighbors; ANN = Arti8cial Neural Network; MARS =
Multivariate Adaptive Regression Splines; GB = Gradient Boosting; PR = Penalized Regression.
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4.2. Invest estimation and carbon relationships

Regarding the carbon stock estimates, each LULC category from the Landsat-9 classi8cation, which provided the mapped surface 
areas, was linked to its carbon capacity using Table 7. This table was constructed following the input requirements of the InVEST 
model, combining carbon pool estimates derived from 8eldwork sampling plots (see Table S1 in Supplementary Material) with 
additional data sources (see section 3.3). For the entire Troodos Mountain range, the total carbon stock estimated using InVEST was 
18258844 t of carbon, or approximately 66949095 t of CO2 equivalent, based on the conversion factor provided by the United States 
Environmental Protection Agency (EPA, 2024). This corresponds to an economic value of 4371 million Euros, calculated using the 
2024 average carbon price in the European Trading System of 65.29 €/tCO2 (SENDECO2, n.d.). Additionally, Fig. 4 speci8cally shows 

Table 6 
Results for the ensemble models for 8nal LULC classi8cation, including training and testing metrics, and optimal hyperparameters.

Hyperparameters Training Testing
Modela Best Adjustment Accuracy Kappa Accuracy Kappa
SVM cost: 2^11 

gamma: 0.001
0.9345 0.9236 0.9079 0.8926

GB n.trees: 100 
interaction.depth: 4 
shrinkage: 0.0230 
n.minobsinnode: 6

0.9604 0.9538 0.9202 0.9069

KNN k: 8 0.9331 0.9220 0.9079 0.8926
ANN NeuronsperLayer: 28 

threshold: 0.136
0.9167 0.9029 0.9141 0.8997

PR alpha: 0.7171 
lambda: 0.0037

0.9031 0.8869 0.9018 0.8854

a Acronyms: SVM = Support Vector Machine; GB = Gradient Boosting; KNN = k-Nearest Neighbors; ANN = Arti8cial Neural Network; PR =
Penalized Regression.

Table 7 
Summary of carbon stocks used for estimation by InVEST modeling for each LULC category withing the study area.

LULC name C above (t/ha) C below (t/ha) C soil (t/ha) C dead (t/ha) Total (tC/ha) Area (ha) tC Total
Bare 0 0 50 0 50 15081.03 754051.5
Complete 125 28 53 10 216 29577.42 6388722.7
Crop 0 0 43 0 43 16437.42 706809.1
Hollow 18 5 49 1 73 30319.92 2213354.2
City 0 0 49 0 49 2772.09 135832.4
Incomplete 54 13 55 4 126 63115.02 7952492.5
Water 0 0 35 0 35 3073.77 107582.0
Total 197 46 334 15 592 160376.67 18258844.3

Fig. 4. Spatial distribution of estimated carbon stocks across the Troodos massif, overlaid with Natura 2000 sites and road infrastructure (Visualized 
in EPSG:4326 – WGS84 for global context; analyses performed in EPSG:32636).

G.E. Suárez-Fernández et al.                                                                                                                                                                                        Remote Sensing Applications: Society and Environment 39 (2025) 101713 

10 



the spatial distribution of carbon stocks across the Troodos massif, highlighting areas of high and low carbon density in relation to 
Natura 2000 sites and both paved and unpaved roads.

Subsequently, using the 10220 matched points (see Fig. S10 in Supplementary Material for an example of the matching technique), 
the mean value was calculated for the sites belonging to and not belonging to the Natura 2000 network. A mean value of 132.958 tC/ha 
was obtained for the treated group, or Natura sites group, and a mean value of 113.596 tC/ha for the control group, or non-Natura sites 
group. The Wilcoxon test revealed a statistically signi8cant difference between the mean carbon values of both groups (p-value 
<0.001), and the g-computation calculation also indicated a signi8cant difference in estimates between in and out of Natura 2000) 
sites of 16.25 tC/ha with an error of 1.57 tC/ha. These results are visually summarized in Fig. 5, which shows the distribution of carbon 
values across both groups using boxplots. The 8gure highlights higher median and mean carbon values within Natura 2000 sites 
compared to non-protected areas, suggesting a positive effect of protection status on carbon storage. Furthermore, the sensitivity 
analysis demonstrated that matching results were robust to unobserved biases up to a level of Γ = 2 (Table S7 in Supplementary 
Material), indicating that even in the presence of moderate selection bias—where treatment probabilities could double due to un
observed variables—the treatment effect remained signi8cant.

The GAM was then 8tted using a Gamma distribution with a logarithmic link function, providing a 7exible and robust approach to 
capture potential nonlinear patterns and relationships in the data (section 3.3). Diagnostic analyses indicated that model assumptions 
were reasonably met, as residuals were approximately normally distributed, centered around zero, and displayed no major patterns or 
heteroscedasticity when plotted against 8tted values or the linear predictor (see diagnostic plots in Fig. S11, Supplementary Material). 
In terms of predictor effects, smooth terms revealed important nonlinear patterns (see Fig. S12). Notably, both the distance to paved 
roads and its interaction with Natura 2000 designation were signi8cant and showed nonlinear effects, with increasing distances 
generally associated with higher carbon stocks. In contrast, while the main effect of distance to all roads was not signi8cant (Table S8), 
its interaction with Natura 2000 areas was, reinforcing the idea that proximity to infrastructure in7uences carbon differently within 
protected areas. Additionally, slope and altitude were both signi8cant and exhibited complex nonlinear effects, while aspect showed a 
clear U-shaped relationship. These results highlight the utility of GAMs in uncovering nuanced spatial effects on carbon storage, also 
con8rming that the model provided an adequate and well-calibrated 8t to the data.

The role of road-related variables in shaping carbon stocks is further illustrated in Fig. 6, which presents the smooth functions 
estimated by the GAM for areas surrounding infrastructure, accompanied by their associated uncertainty and linear trend lines. As 
shown, Natura 2000 areas (blue) generally exhibited higher carbon stocks than non-protected zones (red). For distance to paved roads 
(left panel), carbon stocks tend to increase within Natura 2000 sites and decrease outside them, based on the linear trend over the 8rst 
1000 m. In contrast, when considering all roads—both paved and unpaved—carbon stocks decrease with distance, being more pro
nounced within Natura 2000 sites. Additionally, Table S9 (Supplementary Material) provides more details on carbon storage per buffer 
around paved roads, total stored carbon, and the area of each buffer.

Fig. 5. Boxplots of carbon values in forest areas inside and outside Natura 2000 sites. Blue represents protected sites (inside Natura 2000), and red 
corresponds to non-protected (outside) areas. Boxes indicate the interquartile range (IQR), with the median shown as a solid horizontal line and the 
mean as a dashed line. Whiskers extend to 1.5 times the IQR, highlighting data variability and potential outliers.
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5. Discussion

The analysis revealed that forested sites under Natura 2000 protection store signi8cantly more carbon than unprotected areas, with 
an average increase of 17 %, supporting the conservation value of such areas. Particularly, this difference may partly re7ect the long- 
standing protection of forested lands in the Troodos massif, which were subject to legal and customary conservation efforts well before 
their formal inclusion in the Natura 2000 network, thus re7ecting the effectiveness of long-term conservation measures in enhancing 
carbon storage capacity. For instance, early forest legislation such as the 1879 Ordinance and the 1881 Forest Law brought all forests 
under state control, establishing legal frameworks that restricted exploitative uses and regulated activities like grazing, which was 
progressively phased out in state forests by 1950. Combined with additional protections—such as the declaration of Paphos Forest as a 
game reserve in 1940—these long-term policies helped preserve forest structure and integrity over decades (FAO, 1952; Kyriacou, 
2006). More recently, European-funded projects have reinforced these conservation outcomes through restoration actions and 
adaptive forest management within Natura 2000 sites (European Commission, 2025; Georghiou et al., 2008).

In light of this context, the observed difference—although minor, possibly due to the speci8c characteristics of the Mediterranean 
region analyzed—aligns with the 8ndings of Duncanson et al. (2023), who reported that AGC was 28 % higher in protected areas 
compared to globally matched unprotected sites. This difference in carbon storage between protection regimes could be attributed to 
two main factors. On the one hand, the effectiveness of protection frameworks facilitates the implementation of adaptive management 
measures and restrictions that minimize degrading activities, such as deforestation or urbanization, as demonstrated by Kallimanis 
et al. (2015) or Mammides et al. (2024). These strategies enhance the resilience of forest ecosystems, ensuring vegetation regeneration 
and contributing to increased carbon stocks. On the other hand, as noted by Miranda et al. (2016), protected areas are often located in 
remote or inaccessible regions, which are typically less affected by human activities and land-use intensi8cation. Such spatial char
acteristics contribute to the preservation of natural ecosystem structure and function, facilitating continuous tree growth and biomass 
accumulation. This pattern appears to be particularly relevant in certain parts of the study area, such as the Paphos Forest, where 
limited anthropogenic disturbance has likely supported higher carbon retention, even though other regions have historically expe
rienced varying degrees of human pressure (Republic of Cyprus - The Mines Service, 2025). Therefore, these 8ndings highlight the 
critical role of effectively managed protected areas in mitigating climate change and fostering long-term environmental sustainability, 
as also emphasized by Cannizzo et al. (2024).

The analysis of road networks and carbon stocks in forested areas revealed complex interactions in7uenced by the type of road and 
the protection status. Proximity to roads, considering the entire network—both paved and unpaved—was associated with an increase 
in carbon stocks, aligning with Vepakomma et al. (2018) and Kalinaki et al. (2023), with this effect being especially pronounced in 
protected areas, highlighting the statistical signi8cance of the interaction between Natura 2000 status and distance to all roads. This 
pattern may be linked to the predominance of unpaved roads, which account for 75 % of the network analyzed (over 11,500 km vs. 
3900 km of paved roads). These roads extend deeper into natural landscapes, increasing light penetration, which may enhance pro
ductivity and regeneration, thus promoting higher carbon storage along the roadsides. Nevertheless, while increased light availability 
may stimulate biomass accumulation, roadside edges could simultaneously induce structural degradation, microclimatic alterations, 
or species turnover, potentially compromising ecological integrity (Sun et al., 2025; Zhou et al., 2020). In addition, including this type 
of distance to the entire road network in the analysis also introduced greater uncertainty with increasing distance, primarily due to 

Fig. 6. Variation in carbon stocks in relation to roads. Left: Considering only distances to paved roads. Right: Considering distances to all types 
of roads.
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fewer data points. Conversely, when distance to paved roads was considered, an opposite trend was observed between protected and 
non-protected areas. Within Natura 2000 sites, carbon stocks increased with greater distance from roads, in accordance with the results 
of Hu et al. (2017), whereas outside Natura 2000 sites, carbon stocks tend to decrease with distance, possibly due to differences in 
LULC between protection regimes, with more forest cover, particularly complete CC class, in Natura 2000 sites, while outside, cropland 
and forests with hollow CC class are more prevalent (see Supplementary Material Figs. S13–S15). It is also important to note that all 
these 8ndings also align with prior research on edge effects, which presents varying perspectives. For example, Pöpperl and Seidl 
(2021) noted that edges can degrade forest structure but also promote biodiversity, while Delgado et al. (2007) and Dormann et al. 
(2020) highlighted improvements due to increased light availability. Therefore, further research is needed to better understand these 
dynamics, especially considering how protection regimes and management interact with road networks, rather than focusing solely on 
road type, as suggested by Braham et al. (2023) or Vepakomma et al. (2018). Notably, to our knowledge, this is the 8rst study to 
examine edge effects on carbon storage across multiple road distances while explicitly accounting for protection regimes, highlighting 
the need for a more detailed approach in future analyses.

As for the top-performing ML models used in this study—ANN, SVM, and GB—demonstrated strong performance in classifying 
LULCs using orthophotos and Landsat images, effectively estimating key variables such as CC. The 8nal ensemble model, combining 
these top-performing algorithms (ANN, SVM, and GB), outperformed individual models, achieving a Kappa coef8cient of 0.91 and 92 
% accuracy. This ensemble approach leveraged each algorithm’s strengths while mitigating weaknesses, as demonstrated by Du et al. 
(2023) and Subedi et al. (2024), who reported comparable accuracies of 96 % and 94 %, respectively. In contrast, Kovárník and Janová 
(2025) obtained comparable accuracies using simple ML models. Consequently, for this region, traditional methods, such as the 
SVM-based classi8cation from orthophotos (section 3.1), achieved satisfactory results, with an accuracy of 90 % and a Kappa coef
8cient of 0.88 in the test set, while ensemble models excelled in identifying complex patterns in heterogeneous environments and 
diverse classes, such as CC in Mediterranean island ecosystems.

Concerning the limitations encountered, the use of InVEST stands out due to its inherent uncertainties in representing complex 
forest ecosystem processes. Certain factors such as droughts, pests, silvicultural treatments, and 8res are not dynamically incorporated, 
potentially altering projections during ecological stability, as suggested by Nunery and Keeton (2010). Carbon stock estimates, which 
assume constant values for the various LULC categories, simplify the in7uence of these biophysical factors. This assumption may 
overlook critical biophysical processes that signi8cantly impact growth and carbon storage. Additionally, the linear approach of the 
InVEST model disregards variables such as nonlinear tree growth and soil chemistry changes (Dang et al., 2017), potentially under
estimating or overestimating carbon stocks (Ouyang et al., 2016). Although the model outputs do not provide explicit error margins, 
efforts were taken to minimize estimation biases by applying species-speci8c allometric equations when available and measuring both 
dominant and suppressed individuals across mono- and mixed-species plots, ensuring a representative assessment of stand-level 
biomass. Thus, future studies should integrate nonlinear models, accounting for climatic and abiotic factors, such as those devel
oped in Ayushi et al. (2024), Suárez-Fernández et al. (2025) or Zurqani (2025), to improve carbon estimates, better quantify potential 
uncertainties, and re8ne comparisons with InVEST-based predictions by evaluating possible deviations.

Another limitation was the scope of 8eld sampling, which focused on an insular-Mediterranean ecosystem. While this may limit 
extrapolation to other biomes or regions, it is the 8rst study of its kind on islands, offering a novel reference for similar contexts. As 
with any sampling approach, there is an inherent limitation in fully capturing the spatial heterogeneity of forest stands. In this case, 
carbon stocks may vary with factors such as altitude, aspect, and forest age, which might not be adequately re7ected in the existing 
plots. Despite this, the 8ndings provide valuable insights applicable to other Mediterranean islands—often underrepresented in sci
enti8c literature—such as Corsica, Sardinia, or Sicily. Future research should include more diverse sampling locations, extend data 
collection to continental ecosystems, and incorporate slopes and altitudinal gradients across various CC categories to enhance 
representativeness and validate methodologies across broader environmental contexts.

Finally, it is important to note that limitations related to the spatial and temporal resolution of the RS data were identi8ed. Landsat 
images—spatial resolution of 30 m— may struggle to capture small-scale changes, leading to potential misclassi8cation in complex 
LULC mosaics. This could affect the accuracy of LULC classi8cations and, therefore, carbon stock estimates in transition zones. Higher- 
resolution data, such as Sentinel-2, offer better boundary delineation but are limited temporally, as images are only available since 
2015, preventing alignment with reference-period orthophotos. Moreover, persistent cloud cover and limited revisit fre
quency—particularly during key seasons—could further restrict the availability of optimal scenes, especially in mountainous regions. 
Future studies should prioritize higher spatial resolution data with consistent temporal and spatial coverage, and incorporate the most 
recent of8cially released datasets whenever available.

Despite the methodological limitations noted, the results provided valuable insights for ecological protection and land management 
on Mediterranean islands such as Cyprus, where forest inventories are often de8cient and rely on limited sampling approaches 
(Zenonos et al., 2025). This hampers their effectiveness in directly linking forest structure and carbon stocks with RS data, thereby 
limiting accurate and up-to-date environmental planning. In this context, the application of the InVEST model enabled a robust 
estimation of carbon storage (García-Ontiyuelo et al., 2024), offering an objective analytical framework for regions with scarce 
geospatial forest information. In addition, the increasing availability of cloud-based platforms—such as Google Earth Engine (GEE), 
Amazon Web Services (AWS), and the Deep Earth System Data Lab (DeepESDL)—is further enhancing the capacity to perform 
large-scale, reproducible carbon stock assessments by facilitating access to multi-source RS data and scalable computational tools 
(Khachoo et al., 2024; Zhao et al., 2022). The 8ndings indicated that Natura 2000 areas hold higher carbon levels, possibly due, as 
previously discussed, to a greater presence of fully covered forest stands. This pattern—along with other documented environmental 
bene8ts of these protected areas, such as improved soil conservation (Hagyó and Tóth, 2018) and reduced land conversion to arti8cial 
surfaces (Mammides et al., 2024)—reinforces the requirement for local governments to prioritize the expansion, proper management, 
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and interconnection of such areas. In particular, integrating carbon storage criteria into spatial planning, road infrastructure devel
opment, and forest management strategies could substantially strengthen climate change mitigation efforts by providing 
decision-makers with tools based on objective territorial characteristics.

In essence, the 8ndings demonstrate the crucial role of Natura 2000 sites in conserving and enhancing ecosystem services, 
particularly their effectiveness in carbon storage. They also emphasize the in7uence of road networks on carbon stocks, which depends 
on both the distance to roads and the applied protection regime. This underscores the need for proper management of roadside 
vegetation in protected areas to maximize environmental bene8ts, and in which future research will continue to explore these dy
namics to develop more effective and adaptive conservation strategies.

6. Conclusion

This study emphasizes the critical role of combining advanced ML techniques with environmental modeling tools to improve forest 
ecosystem management and understanding. The integration of an ensemble-based LULC classi8cation approach with ecosystem ser
vice models allowed for a highly accurate subdivision of forest classes based on CC, enabling a more detailed assessment of carbon 
stocks. The 8ndings underscore the crucial role of Natura 2000 sites in increasing carbon storage and reveal the complex interactions 
between road networks, protection regime and carbon stocks. Speci8cally, carbon distribution varies depending on both the distance 
to roads and the applied protection regime. These insights emphasize the need for adaptive conservation strategies that integrate ML, 
RS, and ecosystem modeling to support sustainable forest management. Future research should further explore these dynamics to 
re8ne land-use policies and enhance conservation and management planning.
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Data availability

The developed codes and results are available at https://doi.org/10.5281/zenodo.16894162. Additionally, satellite images, along 
with other input data, can be obtained by contacting the corresponding author or through the references listed in the text.
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Pöpperl, F., Seidl, R., 2021. Effects of stand edges on the structure, functioning, and diversity of a temperate mountain forest landscape. Ecosphere 12 (8). https://doi. 
org/10.1002/ecs2.3692.

Posit Software, 2025. RStudio desktop. https://posit.co/download/rstudio-desktop/.
Prodromou, M., Theocharidis, C., Gitas, I.Z., Eliades, F., Themistocleous, K., Papasavvas, K., Dimitrakopoulos, C., Danezis, C., Hadjimitsis, D., 2024. Forest habitat 

mapping in Natura2000 regions in Cyprus using sentinel-1, sentinel-2 and topographical features. Remote Sens. 16 (8). https://doi.org/10.3390/rs16081373.
Public Administration and Personnel Department, 2024. National open data portal . Ministry of 8nance. https://data.gov.cy/en.
QGIS, 2025. QGIS overview. https://qgis.org/project/overview/.
R Core Team, 2024. The R Project for Statistical Computing. R Foundation. https://www.r-project.org/.
Republic of Cyprus - The Mines Service, 2025. The Mines services. https://www.moa.gov.cy/moa/Mines/MinesSrv.nsf/dmlindex_en/.
Rey, D., Neuhäuser, M., 2011. Wilcoxon-signed-rank test. In: International Encyclopedia of Statistical Science. Springer Berlin Heidelberg, pp. 1658–1659. https:// 

doi.org/10.1007/978-3-642-04898-2_616.
Rimal, B., Sharma, R., Kunwar, R., Keshtkar, H., Stork, N.E., Rijal, S., Rahman, S.A., Baral, H., 2019. Effects of land use and land cover change on ecosystem services in 

the Koshi River Basin, Eastern Nepal. Ecosyst. Serv. 38. https://doi.org/10.1016/j.ecoser.2019.100963.
Rondeaux, G., Steven, M., Baret, F., 1996. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 55 (2), 95–107. https://doi.org/10.1016/0034- 

4257(95)00186-7.
Rosenbaum, P.R., 2002. Observational Studies. Springer, New York. https://doi.org/10.1007/978-1-4757-3692-2. 
Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., 1973. Monitoring vegetation systems in the great plains with ERTS. 3rd ERTS Symposium, NASA SP-351, 

309–317.
Sales, V., Marques, A., Racolte, G., Nunes, A., Guimaraes, T., Zanotta, D., Spigolon, A., Gonzaga, L., Roberto Veronez, M., 2023. Evaluation of resampling techniques 

to provide better synthesized input data to super-resolution deep learning model training. International Geoscience and Remote Sensing Symposium (IGARSS) 
7368–7371. https://doi.org/10.1109/IGARSS52108.2023.10281470, 2023-July. 

Schleicher, J., Eklund, J., Barnes, M.D., Geldmann, J., Oldekop, J.A., Jones, J.P.G., 2020. Statistical matching for conservation science. Conserv. Biol. 34 (3), 538–549. 
https://doi.org/10.1111/cobi.13448.

SENDECO2. (n.d.). Precios CO2. co2 Prices. Retrieved January 9, 2025, from https://www.sendeco2.com/es/precios-co2.
Shi, Y., Yang, K., Yang, Z., Zhou, Y., 2022. Primer on arti8cial intelligence. In: Mobile Edge Arti8cial Intelligence. Elsevier, pp. 7–36. https://doi.org/10.1016/B978-0- 

12-823817-2.00011-5.
Snowden, J.M., Rose, S., Mortimer, K.M., 2011. Implementation of G-computation on a simulated data set: demonstration of a causal inference technique. Am. J. 

Epidemiol. 173 (7), 731–738. https://doi.org/10.1093/aje/kwq472.
Sripada, R.P., Heiniger, R.W., White, J.G., Meijer, A.D., 2006. Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agron. 

J. 98 (4), 968–977. https://doi.org/10.2134/agronj2005.0200.
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Toivio, J., Helmisaari, H.S., Palviainen, M., Lindeman, H., Ala-Ilomäki, J., Sirén, M., Uusitalo, J., 2017. Impacts of timber forwarding on physical properties of forest 

soils in southern Finland. For. Ecol. Manag. 405, 22–30. https://doi.org/10.1016/j.foreco.2017.09.022.
Tsintides, T.C., Hadjikyriakou, G.N., Christodoulou, C.S., Kourtellarides, L., Cristodoulou, Ch s., Hadjikyriakou, G.N., Fragman, O., Levy-Yamamori, R., 2002. Trees 

and Shrubs in Cyprus (First). Leventis Foundation &Cyprus Forest Association.
Tucker, C.J., Elgin, J.H., McMurtrey, J.E., Fan, C.J., 1979. Monitoring corn and soybean crop development with hand-held radiometer spectral data. Remote Sens. 

Environ. 8 (3), 237–248. https://doi.org/10.1016/0034-4257(79)90004-X.
Turkowski, K., 1990. Filter for common resampling tasks. In: Glassner, A.S. (Ed.), Graphics Gems. Academic Press, pp. 147–165.
United Nations General Assembly, 2015. Transforming Our World: the 2030 Agenda for Sustainable Development.
United Nations Of8ce for the Coordination of Humanitarian Affairs (OCHA), 2024. Cyprus roads. Humanitarian Data Exchange HDX. https://data.humdata.org/ 

dataset/hotosm_cyp_roads.
United States Environmental Protection Agency (EPA), 2024. Greenhouse gas equivalencies calculator. https://www.epa.gov/energy/greenhouse-gas-equivalencies- 

calculator#results.
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